Skip to main content
Log in

Understanding intrinsic plasticizer in vegetable oil-based polyurethane elastomer as enhanced biomaterial

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Renewable polyol is of increasing interest as a building block in biomedical elastomer for bearing biodegradable ester group and immaculate functionality. Derived from non-edible vegetable oil, a new class of elastomer was successfully functionalized with MDI and TDI. Crosslink densities were varied by regulating ratio of hydroxyl to diisocyanate (r) at 1/1.0, 1/1.1, and 1/1.2. Produced elastomers were examined by crosslink density, attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, tensile testing, and scanning electron microscopy. The obtained elastomers had subambient glass transition temperature (T g) suggested majority soft segment that acted as a continuous phase with intermediate phase separation. Medium conversion at gel point had enhanced physical properties. Highly elastic mechanical behavior was afforded from combination of side chains and high molecular weight polyol. At r = 1/1.2, MDI-based elastomer showed twofold improvement in Young modulus at slight expense of elongation. TDI-based elastomer accomplished elongation beyond 162%. Branching allophanate and biuret resisted early thermal breakdown by elevating activation energy. Frequency response and kinetic of thermal degradation provided beneficial perspective for elastomer characterization. The vegetable oil-based polyurethane was found able to resemble most of the physical properties of polycaprolactone (PCL)-derived polyurethane.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Modern Plastic International. Mod Plast Int. Lausanne; 1990;20(1):31.

  2. Ionescu M. Chemistry and technology of polyols for polyurethanes. Shawbury: Rapra Technology; 2005. p. 13–50.

  3. Desroches M, Escouvois M, Auvergne R, Caillol S, Boutevin B. From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polym Rev. 2012;52(1):38–79. doi:10.1080/15583724.2011.640443.

    Article  CAS  Google Scholar 

  4. Lligadas G, Ronda JC, Galià M, Cádiz V. Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromol. 2010;11(11):2825–35. doi:10.1021/bm100839x.

    Article  CAS  Google Scholar 

  5. Malaysian Palm Oil Board. Malaysian Oil Palm Statistics 2012. 32 ed. Bangi; 2013.

  6. Saliterman S. Fundamentals of BioMEMS and medical microdevices. Washington: SPIE Press; 2006.

    Google Scholar 

  7. Loh XJ, Colin Sng KB, Li J. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(ε-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Biomaterials. 2008;29(22):3185–94. doi:10.1016/j.biomaterials.2008.04.015.

    Article  CAS  Google Scholar 

  8. Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21 st century. Prog Polym Sci. 2010;35(10):1217–56. doi:10.1016/j.progpolymsci.2010.04.002.

    Article  CAS  Google Scholar 

  9. Cherng JY, Hou TY, Shih MF, Talsma H, Hennink WE. Polyurethane-based drug delivery systems. Int J Pharm. 2013;450(1–2):145–62. doi:10.1016/j.ijpharm.2013.04.063.

    Article  CAS  Google Scholar 

  10. May-Hernández L, Hernández-Sánchez F, Gomez-Ribelles JL, Sabater-i Serra R. Segmented poly(urethane-urea) elastomers based on polycaprolactone: structure and properties. J Appl Polym Sci. 2011;119(4):2093–104. doi:10.1002/app.32929.

    Article  Google Scholar 

  11. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8–9):762–98. doi:10.1016/j.progpolymsci.2007.05.017.

    Article  CAS  Google Scholar 

  12. Saalah S, Abdullah LC, Aung MM, Salleh MZ, Awang Biak DR, Basri M, et al. Waterborne polyurethane dispersions synthesized from jatropha oil. Ind Crops Prod. 2015;64:194–200. doi:10.1016/j.indcrop.2014.10.046.

    Article  CAS  Google Scholar 

  13. Petrović ZS. Polyurethanes from vegetable oils. Polym Rev. 2008;48(1):109–55. doi:10.1080/15583720701834224.

    Article  Google Scholar 

  14. Petrović ZS, Guo A, Javni I, Cvetković I, Hong DP. Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polym Int. 2008;57(2):275–81. doi:10.1002/pi.2340.

    Article  Google Scholar 

  15. Petrovic ZS, Javni I, Guo A, Zhang W, inventors; Method of making natural oil-based polyols and polyurethanes therefrom. US Patent 6686435 patent 6686435. 2004.

  16. Zlatanić A, Lava C, Zhang W, Petrović ZS. Effect of structure on properties of polyols and polyurethanes based on different vegetable oils. J Polym Sci Part B Polym Phys. 2004;42(5):809–19. doi:10.1002/polb.10737.

    Article  Google Scholar 

  17. Petrović ZS, Yang L, Zlatanić A, Zhang W, Javni I. Network structure and properties of polyurethanes from soybean oil. J Appl Polym Sci. 2007;105(5):2717–27. doi:10.1002/app.26346.

    Article  Google Scholar 

  18. De Genova R, Malsam J, Zlatanic A, Wazirzada Y. Blo-based polyols for the flexible slabstock foam industry. J Oil Palm Res. 2008; Spec. Iss. October: 53–60.

  19. Badri KH, Ahmad SH, Zakaria S. Production of a high-functionality RBD palm kernel oil-based polyester polyol. J Appl Polym Sci. 2001;81(2):384–9. doi:10.1002/app.1449.

    Article  CAS  Google Scholar 

  20. Gübitz GM, Mittelbach M, Trabi M. Exploitation of the tropical oil seed plant Jatropha curcas L. Biores Technol. 1999;67(1):73–82. doi:10.1016/s0960-8524(99)00069-3.

    Article  Google Scholar 

  21. Ahmed WA, Salimon J. Phorbol ester as toxic constituents of tropical Jatropha curcas seed oil. Eur J Sci Res. 2009;31(3):429–36.

    Google Scholar 

  22. Hazmi ASA, Aung MM, Abdullah LC, Salleh MZ, Mahmood MH. Producing Jatropha oil-based polyol via epoxidation and ring opening. Ind Crops Prod. 2013;50:563–7. doi:10.1016/j.indcrop.2013.08.003.

    Article  CAS  Google Scholar 

  23. Flory PJ, Rehner J. Statistical mechanics of cross-linked polymer networks I. Rubberlike Elast J Chem Phys. 1943;11(11):512.

    Article  CAS  Google Scholar 

  24. Krevelen DWV, Nijenhuis KT. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. 4th ed. Amsterdam: Elsevier Science; 2009.

    Google Scholar 

  25. Petrović ZS, Guo A, Zhang W. Structure and properties of polyurethanes based on halogenated and nonhalogenated soy–polyols. J Polym Sci Part A Polym Chem. 2000;38(22):4062–9. doi:10.1002/1099-0518(20001115)38:22<4062:aid-pola60>3.0.co;2-l.

    Article  Google Scholar 

  26. ASTM Standard D3418-03 I. Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. West Conshohocken, PA; 2003.

  27. ASTM Standard E-1641-99 I. Standard test method for decomposition kinetics by thermogravimetry. West Conshohocken, PA; 1999.

  28. ASTM Standard D5026-01 I. Standard test method for plastics: dynamic mechanical properties: In: Tension. West Conshohocken, PA; 2001.

  29. ASTM Standard D638-03 I. Standard test method for tensile properties of plastics. West Conshohocken, PA; 2003.

  30. Nishikida K, Coates J. Infrared and Raman analysis of polymers. In: Lobo H, Bonilla JV, editors. Handbook of plastics analysis. CRC Press; 2003. p. 650. doi:10.1201/9780203911983.ch7.

  31. Lapprand A, Boisson F, Delolme F, Méchin F, Pascault JP. Reactivity of isocyanates with urethanes: conditions for allophanate formation. Polym Degrad Stab. 2005;90(2):363–73. doi:10.1016/j.polymdegradstab.2005.01.045.

    Article  CAS  Google Scholar 

  32. Delebecq E, Pascault J-P, Boutevin B, Ganachaud F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev. 2013;113(1):80–118. doi:10.1021/cr300195n.

    Article  CAS  Google Scholar 

  33. Wirpsza Z. Polyurethanes, chemistry, technology and applications. Polymer science and technology series. New York: Ellis Horwood; 1993.

  34. Sonnenschein MF. Introduction to polyurethane chemistry. Polyurethanes. Wiley; 2014. p. 105–26.

  35. Dušek K, Špírková M, Ilavský M. Network formation in polyurethanes due to allophanate and biuret formation: gel fraction and equilibrium modulus. Makromol Chem Macromol Symp. 1991;45(1):87–95. doi:10.1002/masy.19910450112.

    Article  Google Scholar 

  36. Semsarzadeh MA, Navarchian AH. Effects of NCO/OH ratio and catalyst concentration on structure, thermal stability, and crosslink density of poly(urethane-isocyanurate). J Appl Polym Sci. 2003;90(4):963–72.

    Article  CAS  Google Scholar 

  37. Redakcji O, Ryszkowska J. Supermolecular structure, morphology and physical properties of urea-urethane elastomers. Polimery. 2012;57(11–12):777–85.

    Google Scholar 

  38. Dey J, Xu H, Shen J, Thevenot P, Gondi SR, Nguyen KT, et al. Development of biodegradable crosslinked urethane-doped polyester elastomers. Biomaterials. 2008;29(35):4637–49. doi:10.1016/j.biomaterials.2008.08.020.

    Article  CAS  Google Scholar 

  39. Thomson T, inventor Timothy Thomson, assignee. Hydrophilic polyurethane as a matrix for the delivery of skin care ingredients. US patent 20020182245. 2002.

  40. Macosko CW, Miller DR. A new derivation of average molecular weights of nonlinear polymers. Macromolecules. 1976;9(2):199–206. doi:10.1021/ma60050a003.

    Article  CAS  Google Scholar 

  41. Petrović ZS, Zhang W, Javni I. Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis. Biomacromol. 2005;6(2):713–9. doi:10.1021/bm049451s.

    Article  Google Scholar 

  42. Fox TG, Loshaek S. Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers. J Polym Sci. 1955;15(80):371–90.

    Article  CAS  Google Scholar 

  43. Clark AJ, Hoong SS. Copolymers of tetrahydrofuran and epoxidized vegetable oils: application to elastomeric polyurethanes. Polym Chem. 2014;5(9):3238–44. doi:10.1039/c3py01527k.

    Article  CAS  Google Scholar 

  44. Menard KP. Dynamic mechanical analysis: a practical introduction. Boca Raton: CRC Press; 2008.

    Book  Google Scholar 

  45. Kevin M. Thermomechanical and dynamic mechanical analysis. In: Lobo H, Bonilla JV, editors. Handbook of plastics analysis. Boca Raton: CRC Press, 2003. p. 102–90.

  46. Zieleniewska M, Auguścik M, Prociak A, Rojek P, Ryszkowska J. Polyurethane-urea substrates from rapeseed oil-based polyol for bone tissue cultures intended for application in tissue engineering. Polym Degrad Stab. 2014;. doi:10.1016/j.polymdegradstab.2014.03.010.

    Google Scholar 

  47. Puszka A, Kultys A. New thermoplastic polyurethane elastomers based on aliphatic diisocyanate. J Therm Anal Calorim. 2017;128(1):407–16. doi:10.1007/s10973-016-5923-7.

    Article  CAS  Google Scholar 

  48. Guan J, Sacks MS, Beckman EJ, Wagner WR. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials. 2004;25(1):85–96. doi:10.1016/S0142-9612(03)00476-9.

    Article  CAS  Google Scholar 

  49. Hong Y, Guan J, Fujimoto KL, Hashizume R, Pelinescu AL, Wagner WR. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials. 2010;31(15):4249–58. doi:10.1016/j.biomaterials.2010.02.005.

    Article  CAS  Google Scholar 

  50. Aung MM, Yaakob Z, Kamarudin S, Abdullah LC. Synthesis and characterization of Jatropha (Jatropha curcas L.) oil-based polyurethane wood adhesive. Ind Crops Prod. 2014;60:177–85. doi:10.1016/j.indcrop.2014.05.038.

    Article  CAS  Google Scholar 

  51. Javni I, Petrović ZS, Guo A, Fuller R. Thermal stability of polyurethanes based on vegetable oils. J Appl Polym Sci. 2000;77(8):1723–34. doi:10.1002/1097-4628(20000822)77:8<1723:aid-app9>3.0.co;2-k.

    Article  CAS  Google Scholar 

  52. Beyler CL, Hirschler MM. Chapter 7, Thermal decomposition of polymers. In: SFPE handbook of fire protection engineering, vol. 2. 2002. p. 111–31.

  53. Hablot E, Zheng D, Bouquey M, Avérous L. Polyurethanes based on castor oil: kinetics, chemical, mechanical and thermal properties. Macromol Mater Eng. 2008;293(11):922–9. doi:10.1002/mame.200800185.

    Article  CAS  Google Scholar 

  54. Prime RB, Bair HE, Vyazovkin S, Gallagher PK, Riga A. In: Menczel JD, Prime RB, editors. Thermogravimetric analysis (TGA). Thermal analysis of polymers. Wiley; 2009. p. 241–317. doi:10.1002/9780470423837.

  55. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6. doi:10.1021/ac60131a045.

    Article  CAS  Google Scholar 

  56. Bogdanov B, Toncheva V, Schacht E, Finelli L, Sarti B, Scandola M. Physical properties of poly(ester-urethanes) prepared from different molar mass polycaprolactone-diols. Polymer. 1999;40(11):3171–82. doi:10.1016/S0032-3861(98)00552-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Graduate Research Fellowship, Universiti Putra Malaysia. The authors acknowledge personnel at Universiti Putra Malaysia, Universiti Kebangsaan Malaysia, Malaysian Nuclear Agency and Malaysian Palm Oil Board for their expert contribution and research facilities. The authors thank Director of Advanced Oleochemical Technology Division and Nurul Farhana Omar for kind proofread this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Syafiq Ahmad Hazmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad Hazmi, A.S., Nik Pauzi, N.N.P., Abd. Maurad, Z. et al. Understanding intrinsic plasticizer in vegetable oil-based polyurethane elastomer as enhanced biomaterial. J Therm Anal Calorim 130, 919–933 (2017). https://doi.org/10.1007/s10973-017-6459-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6459-1

Keywords

Navigation