Skip to main content
Log in

Quenching media effects on martensitic transformation, thermodynamic and structural properties of Cu–Al–Fe–Ti high-temperature shape memory alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We investigated the effect of three different quenching medias on martensitic transformation, thermodynamic parameters, phase equilibria, microstructural properties and microhardness values of high-temperature Cu–13.2Al–5.1Fe–1.2Ti (mass%) shape memory alloy by means of differential scanning calorimetry, X-ray diffraction, optical microscopy, scanning electron microscopy and Vicker’s microhardness measurements. Thermal analysis indicated that the transformation temperatures and thermodynamic parameters of the alloy changed depending on quenching conditions and the transformation temperature range was proportional to the cooling rate. It was found that the step-quenching treatment improved the operation temperature of alloy. Structural analysis showed that the phase components of the alloy were not affected significantly by the quenching conditions, but elemental analysis also revealed that high cooling rate leads to very significant changes on chemical compositions of the phase components. From microstructural investigations, it was found that the microstructure of alloy included a great number of voids having different sizes and forms and also different precipitates grow in these voids. In particular, it was seen that the step-quenching process caused the formation of new voids in the microstructure. Vicker’s microhardness measurements revealed that the microhardness value of the alloy was not influenced markedly by the quenching treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Firstov GS, Van Humbeeck J, Koval YN. High-temperature shape memory alloys: some recent developments. Mater Sci Eng A. 2004;378:2–10.

    Article  Google Scholar 

  2. Gama JLL, Dantas CC, Quadros NF, Ferreira RAS, Yadava YP. Microstructure-mechanical property relationship to copper alloys with shape memory during thermomechanical treatments. Metall Mater Trans A. 2006;37A:77–87.

    Article  CAS  Google Scholar 

  3. Lelatko J, Morawiec H. High temperature Cu–Al–Nb—based shape memory alloys. Journal de Physique. 2001;IV(11):Pr8-487–92.

    Google Scholar 

  4. Pérez-Landazábal JI, Recarte V, Nó ML, San Juan J. Determination of the order in γ1 intermetallic phase in Cu–Al–Ni shape memory alloys. Intermetallics. 2003;11:927–30.

    Article  Google Scholar 

  5. Raju TN, Sampath V. Influence of aluminium and iron contents on the transform temperatures of Cu–Al–Fe shape memory alloys. Trans Indian Instute Metals. 2011;64:165–8.

    Article  CAS  Google Scholar 

  6. Raju TN, Sampath V. Effect of ternary addition of iron on shape memory characteristics of Cu–Al alloys. J Mater Eng Perform. 2011;20:767–70.

    Article  CAS  Google Scholar 

  7. Yang S, Su Y, Wang C, Liu X. Microstructure and properties of Cu–Al–Fe high-temperature shape memory alloys. Mater Sci Eng B. 2014;185:67–73.

    Article  CAS  Google Scholar 

  8. Yildiz K, Kök M, Dağdelen F. Cobalt addition effects on martensitic transformation and microstructural properties of high-temperature Cu–Al–Fe shape-memory alloys. J Therm Anal Calorim. 2015;120:1227–32.

    Article  CAS  Google Scholar 

  9. Dagdelen F, Gokhan T, Aydogdu A, Aydogdu Y, Adiguzel O. Effects of thermal treatments on transformation behaviour in shape memory Cu–Al–Ni alloys. Mater Lett. 2003;57:1079–85.

    Article  CAS  Google Scholar 

  10. Saud SN, Hamzah E, Abubakar T, Farahany S. Structure-property relationship of Cu–Al–Ni–Fe shape memory alloys in different quenching media. J Mater Eng Perform. 2014;23:255–61.

    Article  CAS  Google Scholar 

  11. Motemani Y, Nili-Ahmadabadi M, Tan MJ, Bornapour M, Rayagan Sh. Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich NiTi shape memory alloy. J Alloy Compd. 2009;46:164–8.

    Article  Google Scholar 

  12. Yan-Qiu Z, Shu-Yong J, Ya-Nan Z, Ming T. Influence of cooling rate on phase transformation and microstructure of Ti-50.9%Ni shape memory alloy. Trans Nonferrous Metals Soc China. 2012;22:2685–90.

    Article  Google Scholar 

  13. Zhou L, Mingpu W, Mingxing G, Lingfei C, Xianliang J. Effect of cooling rate on the order in martensite of a Cu–Zn–Al alloy. J Mater Sci. 2005;40:123–7.

    Article  Google Scholar 

  14. Sarı U. Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu–Al–Ni shape memory alloys. Int J Miner Metall Mater. 2010;17:192–8.

    Article  Google Scholar 

  15. Kalbfleisch A-S, Matthews G, Jacques PJ. On the influence of the cooling rate on the martensitic transformation of Ni–Mn–Sn Heusler alloys. Scripta Mater. 2016;114:121–4.

    Article  CAS  Google Scholar 

  16. Pan G, Balagna C, Martino L, Spriano S. Microstructure and transformation temperatures in rapid solidified Ni–Ti alloys. PartI: the effect of cooling rate. J Alloy Compd. 2014;589:628–32.

    Article  CAS  Google Scholar 

  17. Planes A, Ll Mañosa, Jurado MA, Romero R, Somoza A. Low temperature ageing behaviour of quenched Cu-Al-Be shape memory alloy. Journal de Physiques IV France. 1997;7(C5):305–10.

    Google Scholar 

  18. Obradó E, Mañosa L, Planes A. Influence of composition and thermal treatments on the martensitic transition of Cu-Al-Mn alloys. Journal de Physiques IV France. 1997;7(C5):233–8.

    Google Scholar 

  19. Chandrasekaran M, Cesari E, Wolska J, Hurtado I, Stalmans R, Dutkiewicz J. Stabilisation of martensite in copper based shape memory alloys. Journal de Physiques IV (Colloque C2, supplément au Journal de Physique III, Volume 5). 1995;5(C2):143–52.

    Google Scholar 

  20. Obradó E, Mañosa Ll, Planes A, Romero R, Somoza A. Quenching effects in Cu–Al–Mn shape memory alloy. Mater Sci Eng A. 1999;273–275:586–9.

    Article  Google Scholar 

  21. Pelegrina JL, Romero R. Calorimetry in Cu–Zn–Al alloys under different structural and microstructural conditions. Mater Sci Eng A. 2000;282:16–22.

    Article  Google Scholar 

  22. Jardine AP, Ashbee KHG, Bassett MJ. Effects of cooling rate on the shape memory effect thermodynamics of NiTi. J Mater Sci. 1988;23:4273–81.

    Article  CAS  Google Scholar 

  23. Ozgen S, Tatar C. Thermoelastic transition kinetics of a gamma irradiated CuZnAl shape memory alloy. Met Mater Int. 2012;18:909–16.

    Article  CAS  Google Scholar 

  24. Yildiz K, Kök M. Study of martensite transformation and microstructural evolution of Cu–Al–Ni–Fe shape memory alloys: effect of heat treatments. J Therm Anal Calorim. 2014;115:1509–14.

    Article  CAS  Google Scholar 

  25. Lojen G, Anžel I, Kneissl A, Križman A, Unterweger E, Kosec B, Bizjak M. Microstructure of rapidly solidified Cu–Al–Ni shape memory alloy ribbons. J Mater Process Technol. 2005;162–163:220–9.

    Article  Google Scholar 

  26. Eskil M, Aldas K, Ozkul I. Prediction of thermodynamic equilibrium temperature of Cu-based shape-memory smart materials. Metall Mater Trans A. 2015;46A:134–42.

    Article  Google Scholar 

  27. Gui J, Zou WH, Wang R, Zhang D, Tang CH, Xiang M, Yang DZ. X-ray diffraction study of the reverse martensitic transformation in Cu–Al–Ni–Mn–Ti shape memory alloy. Scripta Mater. 1996;35:435–40.

    Article  CAS  Google Scholar 

  28. Wei ZG, Peng HY, Zou WH, Yang DZ. Aging effects in a Cu-12Al-5Ni-2Mn-1Ti shape memory alloy. Metall Mater Trans A. 1997;28A:955–67.

    Article  CAS  Google Scholar 

  29. Saud SN, Hamzah E, Abubakar T, Zamri M, Tanemura M. Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu–Al–Ni shape memory alloys. J Therm Anal Calorım. 2014;118:111–22.

    Article  CAS  Google Scholar 

  30. Wang CP, Su Y, Yang SY, Shi Z, Liu XJ. A new type of Cu-Al-Ta shape memory alloy with high martensitic transformation temperature. Smart Mater Struct. 2014;23:025018.

    Article  Google Scholar 

  31. Hurtado I, Ratchev P, Van Humbeeck J, Delaey L. A fundamental study of the χ-phase precipitation in Cu–Al–Ni–Ti–(Mn) shape memory alloys. Acta Mater. 1996;44:3299–306.

    Article  CAS  Google Scholar 

  32. Sugimoto K, Kamei K, Matsumoto H, Komatsu S, Akamatsu K, Sugimoto T. Grain-refinement and the related phenomena in quaternary Cu-Al-Ni-Ti shape memory alloys. Le Journal de Physiques Colloques. 1982;43(C4):761–6.

    Google Scholar 

  33. Sure GN, Brown LC. The mechanical properties of grain refined β-CuAlNi strain-memory alloys. Metall Trans A. 1984;15A:1613–21.

    Article  CAS  Google Scholar 

  34. Sobrero CE, La Roca P, Roatta A, Bolmaro RE, Malarría J. Shape memory properties of highly textured Cu–Al–Ni–(Ti) alloys. Mater Sci Eng A. 2012;536:207–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Management Unit of Scientific Research projects of Firat University (FÜBAP) (Project Number: FF.15.16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koksal Yildiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, K., Balci, E. & Akpinar, S. Quenching media effects on martensitic transformation, thermodynamic and structural properties of Cu–Al–Fe–Ti high-temperature shape memory alloy. J Therm Anal Calorim 129, 937–945 (2017). https://doi.org/10.1007/s10973-017-6219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6219-2

Keywords

Navigation