Skip to main content
Log in

Thermal stability of modified chromium dioxide nanopowders with various magnetic properties obtained by hydrothermal route

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition of hydrothermal micro- and nano-sized CrO2 powders obtained at the presence of nuclei with different structures (Mo + Sb, Te + Sn) and an iron dopant (Te + Sn + Fe) was studied by thermal analysis (DTG–DSC), XRD, SEM, VSM methods, and SSA estimation. It has been found that the decomposition of chromium dioxide happens with formation of CrO1.5 at 450–540 °C, no changes in the lattice parameters were observed. The temperature of the process for nano-sized CrO2 samples is 100 °C lower than for micro-sized sample. The decomposition of nanopowders occurs in two stages with DTG and DSC peaks at about 470 and 500 °C correspondingly. The particles under study consist of a CrO2 core and a CrOOH shell, so the sample transformation begins from the shell oxidation resulting in the CrO2 surface layer formation. The first peak corresponds to the decomposition of such layer to Cr2O3, and the second—to the core transformation which occurs later. For the iron-containing powders, the additional endoeffect and mass loss has been found at 550 °C, which is determined by presence of a FexCr1−xO2 solid solution mainly located in the particle shell. The shift toward lower temperatures for nano-sized samples decomposition peak and the observed peak splitting indicate an impact of the dimensional effect on powder thermal stability. Obtained data show that nanopowders are highly stable up to 200 °C and can be used for magnetoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dai J, Tang J. Temperature dependence of the conductance and magnetoresistance of CrO2 powder compacts. Phys Rev B. 2001;. doi:10.1103/PhysRevB.63.064410.

    Google Scholar 

  2. Belevtsev BI, Dalakona NV, Osmolowsky MG, Beliayev EY, Selutin AA. Transport and magnetotransport properties of cold-pressed CrO2 powder, prepared by hydrothermal synthesis. J Alloy Compd. 2009;. doi:10.1016/j.jallcom.2008.12.082.

    Google Scholar 

  3. Dalakova NV, Beliayev EY, Osmolovskaya OM, Osmolovsky MG, Gorelyy VA. Tunnel magnetoresistance of compacted CrO2 powders with particle shape anisotropy. Bull Russ Acad Sci: Phy. 2015;. doi:10.3103/S1062873815060064.

    Google Scholar 

  4. Dwivedi S, Jadhav J, Sharma Y. Biswas S Pulsed laser deposited ferromagnetic chromium dioxide thin films for applications in spintronics. Phys Proc. 2014;. doi:10.1016/j.phpro.2014.10.037.

    Google Scholar 

  5. Rameev BZ, Gupta A, Yildiz F, Tagirov LR, Aktas B. Strain-induced magnetic anisotropies in epitaxial CrO2 thin films probed by FMR technique. J Magn Magn Mater. 2006;. doi:10.1016/j.jmmm.2005.10.207.

    Google Scholar 

  6. Ensling J, Gütlich P, Klinger R, Maisel W, Jachow H, Schwab E. Magnetic pigments for recording media. Hyperfine Interact. 1998;. doi:10.1023/A:1012624827290.

    Google Scholar 

  7. Keller R, Schmidbauer E. Rotational hysteresis and magnetization of elongated Fe-doped CrO2 particles. J Magn Magn Mater. 1998;. doi:10.1016/S0304-8853(98)00044-4.

    Google Scholar 

  8. Keizer RS, Goennenwein STB, Klapwijk TM, Miao G, Xiao G, Gupta A. A spin triplet supercurrent through the half-metallic ferromagnet CrO2. Nature. 2006;. doi:10.1038/nature04499.

    Google Scholar 

  9. Zhang X, Chen Y, Lü L, Li Z. A potential oxide for magnetic refrigeration application: CrO2 particles. J Phys: Condens Matter. 2006;. doi:10.1088/0953-8984/18/44/l01.

    Google Scholar 

  10. Osmolovskii MG, Kozhina II, Ivanova LY, Baidakova OL. Hydrothermal synthesis of chromium dioxide. Russ J Appl Chem. 2001;. doi:10.1023/A:1012702824705.

    Google Scholar 

  11. Osmolowsky MG, Bondarenko OK, Gordeev SV, Otkupshchikov AY, Korolev SI, Kobelev AI. New opportunities of variation in the particle sizes and properties of chromium dioxide. Bull Russ Acad Sci Phys. 2008;. doi:10.3103/S1062873808080236.

    Google Scholar 

  12. Osmolovskaya OM, Arkhipov DI, Gordeev SV, Dzidziguri EL, Osmolovskii MG. Synthesis of single-domain chromium dioxide nanoparticles with high coercitivity. Russ J Appl Chem. 2015;. doi:10.1134/S1070363215040362.

    Google Scholar 

  13. Osmolovskii MG, Bondarenko OK, Shchukarev AV. Versions of ordering of dopant atoms in the magnetic structure of CrO2. Bull Russ Acad Sci Phys. 2007;. doi:10.3103/S1062873807020293.

    Google Scholar 

  14. Selyutin AA, Osmolovsky MG, Bondarenko OK, Bobrysheva NP, Veinger AI. Nanocluster formation in oxide systems containing 3d elements. Bull Russ Acad Sci Phys. 2006;70:1148–53.

    Google Scholar 

  15. Sajadi SAA, Khaleghian M. Study of thermal behavior of CrO3 using TG and DSC. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-013-3597-y.

    Google Scholar 

  16. Singh GP, Ram S, Eckert J, Fecht H-J. Synthesis and morphological stability in CrO2 single crystals of a half-metallic ferromagnetic compound. J Phys: Conf Ser. 2009;. doi:10.1088/1742-6596/144/1/012110.

    Google Scholar 

  17. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL. The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data. 1982;11 Suppl 1.

  18. Wei G, Qu J, Qi T, Zheng Y, Guo Q. Formation of Cr(VI) compounds during the thermal decomposition of amorphous chromium hydroxide. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-014-3785-4.

    Google Scholar 

  19. Patent EP 0548642A, 1993, BASF.

  20. Matveeva PA, Nazarov DV, Osmolovskaya OM, Kasatkin IA, Smirnov VM, Bobrysheva NP, Osmolovskii MG. Effect of the annealing temperature and time of the particle size of tin dioxide. Russ J Gen Chem. 2015;. doi:10.1134/S1070363215010387.

    Google Scholar 

  21. Osmolowskaya OM. Regulation of HAP and iron oxide nanoparticle morphology using chelating agents. In: Biogenic—abiogenic interactions in natural and anthropogenic systems. 2016. doi:10.1007/978-3-319-24987-2_36.

  22. Patterson A. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;. doi:10.1103/PhysRev.56.978.

    Google Scholar 

  23. Filipek E, Kurzawa M, Dabrowska G. Initial study on the oxide system Cr2O3–Sb2O4. J Therm Anal Calorim. 2000;. doi:10.1023/A:1010101408493.

    Google Scholar 

  24. Fan LN, Chen YJ, Zhang XY, Yao DL. Influence of ultrasonic treatment on magnetotransport of CrO2 granular compacts. J Magn Magn Mater. 2005;. doi:10.1016/j.jmmm.2004.07.053.

    Google Scholar 

  25. Essig M, Müller MW, Schwab E. Structural analysis of the stabilization layer of chromium dioxide particles. IEEE Trans Magn. 1990;. doi:10.1109/20.50493.

    Google Scholar 

  26. Arkhipov DI, Osmolovskaya OM, Dzidziguri EL, Osmolovskii MG. Investigation into chromium dioxide nanopowders obtained under hydrothermal conditions in the presence of molybdenum and antimony modifiers. Nanotechnol Russia. 2015;. doi:10.1134/S1995078015010036.

    Google Scholar 

  27. Shibasaki Y. Synthesis of orthorhombic CrOOH and the reaction mechanism. Mater Res Bull. 1972;. doi:10.1016/0025-5408(72)90165-1.

    Google Scholar 

  28. Alario Franco MA, Sing KSW. The interconversion of orthorhombic chromium oxy-hydroxide and chromium dioxide. J Therm Anal. 1972;. doi:10.1007/BF02100949.

    Google Scholar 

  29. Barybin AA, Shapovalov VI. Differential equation for the melting temperature of small-size particles. Tech Phys Lett. 2010;. doi:10.1134/S1063785010110258.

    Google Scholar 

  30. Kumar VB, Porat Z, Gedanken A. DSC measurements of the thermal properties of gallium particles in the micron and sub-micron sizes, obtained by sonication of molten gallium. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4402-x.

    Google Scholar 

  31. Alario Franco MA, Thomas JM, Shannon RD. Crystallographic shear structures derived from CrO2: an electron microscopic study. J Solid State Chem. 1974;. doi:10.1016/0022-4596(74)90083-8.

    Google Scholar 

  32. Mehrer H. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. 2nd ed. Germany: Springer; 2009.

    Google Scholar 

  33. Petrunin VF. Neutron diffraction investigation of specific features of the structure of ultrafine (nano) materials. Phys Solid State. 2014;. doi:10.1134/S1063783414010296.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Ministry of Education and Science of Russian Federation in the framework of Increase Competitiveness Program of MISiS. Scientific researches were performed at the Centre of X-ray Diffraction Studies and Innovative Technologies of Composite Nanomaterials of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Osmolovskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, D.I., Bobrysheva, N.P., Dzidziguri, E.L. et al. Thermal stability of modified chromium dioxide nanopowders with various magnetic properties obtained by hydrothermal route. J Therm Anal Calorim 128, 71–78 (2017). https://doi.org/10.1007/s10973-016-5919-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5919-3

Keywords

Navigation