Skip to main content
Log in

Effect of acid–alcoholic treatment on the thermal, structural and pasting characteristics of European chestnut (Castanea sativa, Mill) starch

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Starch modification studies have been carried out to overcome the shortcomings of native starches and to increase the usefulness of starch for industrial applications. The thermal, structural and pasting properties of starch from chestnut fruits (Castanea sativa, Mill), which were modified by mixtures of water–HCl, methanol–HCl and ethanol–HCl at different concentrations, were assessed. The thermogravimetry (TG) results showed that the chestnut starches had lower thermal stability when compared to starch from other botanic sources; however, after treatment, this stability increased. The differential scanning calorimetry results confirmed the gradual degradation of the amorphous areas of the starch granules by the acid–water mixture, which was enhanced by acid–ethanol treatment, leading to more crystalline residues that needed higher enthalpy to gelatinise. Using X-ray powder diffractometry, it was possible to observe a C-type starch and a reduction in relative crystallinity values when compared to native starch. In addition, the pasting viscosities decreased in all the modified starches, as was expected. However, obvious defects or signs of damage on the surface of the granules were not observed after treatment. This study is helpful to better understand the relationships between structure and functional properties in relation to the eventual industrial application of chestnut starches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Demiate IM, Oetterer M, Wosiacki G. Characterization of chestnut (Castanea sativa, Mill) starch for industrial utilization. Braz Arch Biol Technol. 2001;44:69–78.

    Article  CAS  Google Scholar 

  2. Benjamin H. Under the spreading chestnut trees. In: Views of the world. University of Oxford; 2015. http://www.viewsoftheworld.net/?p=4681. Acessed 15 Apr 2016.

  3. Carocho M, Antonio AL, Barreira JCM, Rafalski A, Bento A, Ferreira ICFR. Validation of gamma and electron beam irradiation as alternative conservation technology for European chestnuts. Food Bioprocess Technol. 2014;7:1917–27.

    Article  CAS  Google Scholar 

  4. Blomhoff R, Carsen MH, Andersen LF, Jacobs DR. Health benefits of nuts: potential role of antioxidants. Br J Nutr. 2006;96:52–60.

    Article  Google Scholar 

  5. Peroni FHG, Rocha TS, Franco CML. Some structural and physicochemical characteristics of tuber and root starches. Food Sci Technol Int. 2006;12:505–13.

    Article  CAS  Google Scholar 

  6. van der Maarel MJEC, Leemhuis H. Starch modification with microbial alpha-glucanotransferase enzymes. Carbohydr Polym. 2013;93:116–21.

    Article  Google Scholar 

  7. Correia P, Cruz-Lopes L, Beirao-Da-Costa L. Morphology and structure of chestnut starch isolated by alkali and enzymatic methods. Food Hydrocoll. 2012;28:313–7.

    Article  CAS  Google Scholar 

  8. Qiao D, Zou W, Liu X, Yu L, Chen L, Liu H, Zhang N. Starch modification using a twin-roll mixer as a reactor. Starch/Stärke. 2012;64:821–5.

    Article  CAS  Google Scholar 

  9. Zhu F. Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends Food Sci Technol. 2015;43:1–17.

    Article  CAS  Google Scholar 

  10. Kaur B, Ariffin F, Bhat R, Karim AA. Progress in starch modification in the last decade. Food Hydrocoll. 2012;26:398–404.

    Article  CAS  Google Scholar 

  11. Ferrini LM, Rocha TS, Demiate IM, Franco CM. Effect of acid–methanol treatment on the physicochemical and structural characteristics of cassava and maize starches. Starch/Stärke. 2008;60:417–25.

    Article  CAS  Google Scholar 

  12. Utrilla-Coello RG, Hernández-Jaimes C, Carrillo-Navas H, González F, Rodríguez E, Bello-Perez LA, Alvarez-Ramirez J. Acid hydrolysis of native corn starch: morphology, crystallinity, rheological and thermal properties. Carbohydr Polym. 2014;2014(103):596–602.

    Article  Google Scholar 

  13. Sodhi NS, Chang Y, Midha S, Kohyama K. Molecular structure and physicochemical properties of acid–methanol-treated chickpea starch. Int J Food Sci Nutr. 2013;16:125–38.

    CAS  Google Scholar 

  14. Lin JH, Pan CL, Hsu YH, Singh H, Chang YH. Influence of moisture content on the degradation of waxy and normal corn starches acid-treated in methanol. Food Hydrocoll. 2012;26:370–6.

    Article  CAS  Google Scholar 

  15. Lin JH, Lee SY, Chang YH. Effect of acid–alcohol treatment on the molecular structure and physicochemical properties of maize and potato starches. Carbohyd Polym. 2003;53:475–82.

    Article  CAS  Google Scholar 

  16. Lin JH, Chang YH. Molecular degradation rate of rice and corn starches during acid–methanol treatment and its relation to the molecular structure of starch. J Agric Food Chem. 2006;54:5880–6.

    Article  CAS  Google Scholar 

  17. Lin JH, Wang SW, Chang YH. Impacts of acid–methanol treatment and annealing on the enzymatic resistance of corn starches. Food Hydrocoll. 2008;23:1465–72.

    Article  Google Scholar 

  18. You S, Izydorczyk MS. Comparison of the physicochemical properties of barley starches after partial α-amylolysis and acid/alcohol hydrolysis. Carbohydr Polym. 2007;69:489–502.

    Article  CAS  Google Scholar 

  19. Mukerjea R, Slocum G, Robyt JF. Determination of the maximum water solubility of eight native starches and solubility of their acidic–methanol and ethanol modified analogues. Carbohydr Res. 2007;342:103–10.

    Article  CAS  Google Scholar 

  20. Pumacahua-Ramos A, Demiate IM, Schnitzler E, Bedin AC, Telis-Romero J, Lopes-Filho JF. Morphological, thermal and physicochemical characteristics of small granules starch from Mirabilis jalapa L. Thermochim Acta. 2015;2005(602):1–7.

    Article  Google Scholar 

  21. Rafiq SI, Jan K, Singh S, Saxena DC. Physicochemical, pasting, rheological, thermal and morphological properties of horse chestnut starch. J Food Sci Technol. 2015;52:5651–60.

    Article  CAS  Google Scholar 

  22. Malucelli LC, Lacerda LG, Carvalho-Filho MAS, Fernández DER, Demiate IM, Oliveira CS, Schnitzler E. Porous waxy maize starch: thermal, structural and viscographic properties of modified granules obtained by enzyme treatment. J Therm Anal Calorim. 2015;120:525–32.

    Article  CAS  Google Scholar 

  23. Colman TAD, Demiate IM, Schintzler E. The effect of microwave radiation on some thermal, rheological and structural properties of cassava starch. J Therm Anal Calorim. 2014;115:2245–52.

    Article  CAS  Google Scholar 

  24. Sun Q, Han Z, Wang L, Xiong L. Physicochemical differences between sorghum starch and sorghum flour modified by heat–moisture treatment. Food Chem. 2014;145:756–64.

    Article  CAS  Google Scholar 

  25. Beninca C, Colman TAD, Lacerda LG, Carvalho Filho MAS, Bannach G, Schnitzler E. The thermal, rheological and structural properties of cassava starch granules modified with hydrochloric acid at different temperatures. Thermochim Acta. 2013;552:65–9.

    Article  CAS  Google Scholar 

  26. Lacerda LG, Colman TAD, Bauab T, Carvalho Filho MAS, Demiate I, Vasconcelos EC, Schnitzler E. Thermal, structural and rheological properties of starch from avocado seeds (Persea americana, Miller) modified with standard sodium hypochlorite solutions. J Therm Anal Calorim. 2014;115:1893–9.

    Article  CAS  Google Scholar 

  27. Lacerda LG, Carvalho Filho MAS, Demiate I, Bannach G, Ionashiro M, Schnitzler E. Thermal behaviour of corn starch granules under action of fungal α-amylase. J Therm Anal Calorim. 2008;93:445–9.

    Article  CAS  Google Scholar 

  28. Stawski D. New determination method of amylose content in potato starch. Food Chem. 2008;2008(110):777–81.

    Article  Google Scholar 

  29. Atichokudomchai N, Varavinit S, Chinachoti P. Gelatinization transitions of acid modified tapioca starches by differential scanning calorimetry. Starch/Starke. 2002;54:296–302.

    Article  CAS  Google Scholar 

  30. Luo ZG, Fu X, Gao QY, Yu SJ. Effect of acid hydrolysis in the presence of anhydrous alcohols on the structure, thermal and pasting properties of normal, waxy and high-amylose maize starches. Int J Food Sci Technol. 2011;46:429–35.

    Article  CAS  Google Scholar 

  31. Cavallini CM, Franco CML. Effect of acid–ethanol treatment followed by ball milling on structural and physicochemical characteristics of cassava starch. Starch/Stärke. 2010;62:236–45.

    Article  CAS  Google Scholar 

  32. Scmiele M, Sehn GAR, Santos VS, Rocha TS, Almeida EL, Nabeshima EH, Chang YK, Steel CJ. Physicochemical, structural and rheological properties of chestnut (Castanea sativa) starch. Am J Food Sci Technol. 2015;3:1–7.

    Google Scholar 

  33. Zhou Y, Hoover R, Liu Q. Relationship between α-amylase degradation and the structure and physicochemical properties of legume starches. Carbohydr Polym. 2004;57:299–317.

    Article  CAS  Google Scholar 

  34. Shi M, Lu W, Yu S, Ward R, Gao Q. Effect of acid–ethanol treatment on physicochemical properties and in vitro digestibility of maize starches varying in AM content. Starch/Stärke. 2014;66:429–35.

    Article  CAS  Google Scholar 

  35. Gunaratne A, Hoover R. Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr Polym. 2002;49:425–37.

    Article  CAS  Google Scholar 

  36. Gul K, Riar CS, Bala A, Sibian MS. Effect of ionic gums and dry heating on physicochemical, morphological, thermal and pasting properties of water chestnut starch. LWT Food Sci Technol. 2014;59:348–55.

    Article  CAS  Google Scholar 

  37. Chen X, He X, Fu X, Huang Q. In vitro digestion and physicochemical properties of wheat starch/flour modified by heat–moisture treatment. J Cereal Sci. 2015;63:109–15.

    Article  CAS  Google Scholar 

  38. Cruz BR, Abraão AS, Lemos AM, Nunes FM. Chemical composition and functional properties of native chestnut starch (Castanea sativa, Mill). Carbohydr Polym. 2013;94:594–602.

    Article  CAS  Google Scholar 

  39. Chung YL, Lai HM. Molecular and granular characteristics of corn starch modified by HCl-methanol at different temperatures. Carbohydr Polym. 2006;63:527–34.

    Article  CAS  Google Scholar 

  40. Adebowale AA, Sanni LO, Awonorin SO. Effect of texture modifiers on the physicochemical and sensory properties of dried fufu. Food Sci Technol Int. 2005;11:373–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support provided by Coordination for the Improvement of Higher Education Personnel (CAPES) and to LabMu at UEPG for X-ray and SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Gustavo Lacerda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubiaki, F.T., Figueroa, A.M., de Oliveira, C.S. et al. Effect of acid–alcoholic treatment on the thermal, structural and pasting characteristics of European chestnut (Castanea sativa, Mill) starch. J Therm Anal Calorim 131, 587–594 (2018). https://doi.org/10.1007/s10973-016-5832-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5832-9

Keywords

Navigation