Skip to main content
Log in

Effect of temperature on the surface properties of α,ω-amino acids in dilute aqueous solutions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, experimental results for surface tension of aqueous solutions of 3-aminopropanoic acid, 4-aminobutanoic acid, 5-aminopentanoic acid and 6-aminohexanoic acid at T = (293.15, 298.15, 303.15 and 308.15) K at several concentrations are presented. The results were used to evaluate the limiting experimental slopes of surface tension with respect to mole fraction at each temperature. Surface tension measurements were taken using a LAUDA TVT-2 drop volume tensiometer with temperature control better than 0.1 K at T = (293.15, 298.15, 303.15 and 308.15) K The thermodynamic behavior of the aqueous α,ω-amino acid solutions is compared with that reported for α-amino acids in water. The surface behavior is discussed in terms of the effect of the hydrocarbon chain and the position of polar groups on water structure. The temperature dependence of the limiting slopes of surface tension with respect to mole fraction, derived from surface tension measurements, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Drost-Hansen W. Aqueous interfaces—methods of study and structural properties—part two. Ind Eng Chem. 1965;57:18–37.

    Article  CAS  Google Scholar 

  2. Blandamer MJ, Cullis PM, Soldi LG, Engberts JBFN, Kacperska A, Van Os NM, Subha MCS. Thermodynamics of micellar systems: comparison of mass action and phase equilibrium models for the calculation of standard Gibbs energies of micelle formation. Adv Colloid Interface Sci. 1995;58:171–209.

    Article  CAS  Google Scholar 

  3. Yaminsky VV. Ninham UBW. Surface forces vs. surface compositions. Colloid science from the Gibbs adsorption perspective. Adv Colloid Interface Sci. 1999;83:227–311.

    Article  CAS  Google Scholar 

  4. Piñeiro A, Brocos P, Bravo R, Amigo A. A comprehensive approach to the surface tension of binary liquid mixtures. Fluid Phase Equilib. 2001;182:337–52.

    Article  Google Scholar 

  5. Ramirez-Verduzco LF, Romero-Martinez A, Trejo A. Prediction of the surface tension, surface concentration, and the relative Gibbs adsorption isotherm of binary liquid systems. Fluid Phase Equilib. 2006;246:119–30.

    Article  CAS  Google Scholar 

  6. Hoke BC, Chen JC. Binary aqueous organic surface tension temperature dependence. J Chem Eng Data. 2001;36:322–6.

    Article  Google Scholar 

  7. Zhao H. Review: viscosity B-coefficients and standard partial molar volumes of amino acids, and their roles in interpreting the protein (enzyme) stabilization. Biophys Chem. 2006;122:157–83.

    Article  CAS  Google Scholar 

  8. Matubayasi N, Miyamoto H, Nahimira J, Yano K, Tanaka T. Thermodynamic quantities of surface formation of aqueous electrolyte solutions: V. Aqueous solutions of aliphatic amino acids. J Colloid Interface Sci. 2002;250:431–7.

    Article  CAS  Google Scholar 

  9. Pappenheimer JR, Lepie MP, Wyman JJ. The surface tension of aqueous solutions of dipolar ions. J Am Chem Soc. 1936;58:1851–5.

    Article  CAS  Google Scholar 

  10. Belton JW. The capillary properties of α-amino-acids. Trans Faraday Soc. 1939;35:1293–8.

    Article  CAS  Google Scholar 

  11. Glinski J, Chavepeyer G, Platten J. Surface properties of aqueous solutions of L-leucine. Biophys Chem. 2000;84:99–103.

    Article  CAS  Google Scholar 

  12. Bull HB, Breese K. Surface tension of amino acid solutions: a hydrophobicity scale of the amino acid residues. Arch Biochem Biophys. 1974;161:665–70.

    Article  CAS  Google Scholar 

  13. Romero CM, Oviedo CD. Effect of temperature on the solubility of α-amino acids and α, ω-amino acids in water. J Solut Chem. 2013;42:1355–62.

    Article  CAS  Google Scholar 

  14. Romero CM, Cadena JC. Effect of temperature on the volumetric properties of α, ω-amino acids in dilute aqueous solutions. J Solut Chem. 2010;39:1474–83.

    Article  CAS  Google Scholar 

  15. Romero CM, Cadena JC, Lamprecht I. Effect of temperature on the dilution enthalpies of α, ω-amino acids in aqueous solutions. J Chem Thermodyn. 2011;43:1441–5.

    Article  CAS  Google Scholar 

  16. Weissberger A. Techniques in chemistry vol I, part 4: methods of chemistry. New York: Wiley Interscience; 1972.

    Google Scholar 

  17. Kitano I, Takaha K, Gemmei-Ide M. Raman spectroscopic study on the structure of water in aqueous solution of α, ω-amino acids. J Colloid Interface Sci. 2005;283:452–8.

    Article  CAS  Google Scholar 

  18. Romero CM, Jiménez E, Suárez F. Effect of temperature on the behavior of surface properties of alcohols in aqueous solution. J Chem Thermodyn. 2009;41:513–6.

    Article  CAS  Google Scholar 

  19. Connors KA, Wright JL. Dependence of surface tension on composition of binary aqueous-organic solutions. Anal Chem. 1989;61:194–8.

    Article  CAS  Google Scholar 

  20. Romero CM, Suárez F. Apparent molar volume and surface tension of dilute aqueous solutions of carboxylic acids. J Chem Eng Data. 2011;56:1778–86.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant DIB-8003195 from Universidad Nacional de Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen M. Romero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadena, J.C., Romero, C.M. Effect of temperature on the surface properties of α,ω-amino acids in dilute aqueous solutions. J Therm Anal Calorim 126, 1615–1619 (2016). https://doi.org/10.1007/s10973-016-5723-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5723-0

Keywords

Navigation