Skip to main content
Log in

Thermoanalytical techniques

Excellent tools for the characterization of ferrite/SiO2 nanocomposites and their precursors

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal analysis and FTIR spectroscopy were used to investigate the formation and thermal decomposition of several manganese ferrite precursors, obtained in the interaction between a mixture of manganese(II) nitrate and iron(III) nitrate (molar ratio 1:2) and different polyols/polyvinyl alcohol, 1,2-propanediol, and ethylene glycol, naked or embedded in silica gel. All prepared precursors consisted in mixture of Mn(II) and Fe(III) carboxylates, obtained through the polyol oxidation by nitrates ions. Similar manganese ferrite precursors were obtained in silica gel also. By the thermal decomposition of the naked precursors, manganese ferrite was obtained at 300 and 400 °C, as fine nanoparticles, with diameters up to 15 nm. Above 400 °C, the manganese ferrite has begun to decompose, due to the Mn(II) oxidation to Mn(III). At 700 °C, only crystalline phases containing Mn(III) were evidenced in the XRD patterns. In case of the precursors embedded in silica gel, their thermal decomposition took place at higher temperatures. Manganese ferrite was partially stabilized by the silica matrix. Thus, manganese ferrite was present in silica matrix, even at 1000 °C, with bixbyite (FeMnO3) impurities. Pure manganese ferrite embedded in silica matrix was obtained in all cases, after annealing the powders obtained at 400 °C, in argon atmosphere, at 1000 °C. The magnetic behavior of the manganese ferrite/silica nanocomposites obtained at 1000 °C in air and in argon was superparamagnetic, with maximum magnetization values of 25 emu g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Krüger A, Gänsbacher B, Plank BC. Magnetofection: enhancing and targeting gen e delivery by magnetic force in vitro and in vivo. Gene Ther. 2002;9:102–9.

    Article  CAS  Google Scholar 

  2. Yang H, Zhang C, Shi X, Hu H, Du X, Fang Y, Ma Y, Wu H, Yang S. Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials. 2010;31(13):3667–73.

    Article  CAS  Google Scholar 

  3. Sharifi I, Shokrollahi H, Amiri S. Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater. 2011;324(6):903–15.

    Article  Google Scholar 

  4. Sahoo B, Sanjana K, Devi P, Dutta S, Maiti TK, Pramanik P, Dhara D. Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. J Colloid Interface Sci. 2014;431:31–41.

    Article  CAS  Google Scholar 

  5. Carta D, Casula MF, Mountjoy G, Corrias A. Formation and cation distribution in supported manganese ferrite nanoparticles: an X-ray absorption study. Phys Chem Chem Phys. 2008;10:3108–17.

    Article  CAS  Google Scholar 

  6. Babu A, Templeton AK, Munshi A, Ramesh R. Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges. J Nanomater. 2013; 11 pages Article ID 863951. doi:10.1155/2013/863951. Accessed 30 Sept 2015.

  7. Kharissova OV, Rasika Diasb HV, Kharisov BI. Magnetic adsorbents based on micro- and nanostructured materials. RSC Adv. 2015;5:6695–719.

    Article  CAS  Google Scholar 

  8. Sahoo B, Sahu SK, Nayak S, Dhara D, Pramanik P. Fabrication of magnetic mesoporous manganese ferrite nanocomposites as efficient catalyst for degradation of dye pollutants. Catal Sci Technol. 2012;2:1367–74.

    Article  CAS  Google Scholar 

  9. Wiertel M, Surowiec Z, Gac W, Budzyński M. Positron annihilation in MnFe2O4/MCM-41 nanocomposite. Acta Phys Pol A. 2014;125:793–7.

    Article  Google Scholar 

  10. Qing-Wei Q, Xiao-Wen X, Mang H, Wang ZH. Radio-frequency-heating capability of silica-coated manganese ferrite nanoparticles. Chin Phys. 2015. doi:10.1088/1674-1056/24/6/067503.

    Google Scholar 

  11. Carta D, Casula MF, Falqui A, Loche D, Mountjoy G, Sangregorio C, Corrias A. A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M = Mn Co, Ni). J Phys Chem C. 2009;113:8606–15.

    Article  CAS  Google Scholar 

  12. Casula MF, Concas G, Congiu F, Corrias A, Loche D, Marras C, Spano G. Characterization of stoichiometric nanocrystalline spinel ferrites dispersed on porous silica aerogel. J Nanosci Nanotechnol. 2011;11(11):10136–41.

    Article  CAS  Google Scholar 

  13. Loche D, Casula MF, Falqui A, Marras S, Corrias A. Preparation of Mn, Ni, Co ferrite highly porous silica nanocomposite aerogels by an urea-assisted sol–gel procedure. J Nanosci Nanotechnol. 2010;10(2):1008–16.

    Article  CAS  Google Scholar 

  14. Szczygieł I, Winiarska K. Synthesis and characterization of manganese–zinc ferrite obtained by thermal decomposition from organic precursors. J Therm Anal Calorim. 2014;115:471–7.

    Article  Google Scholar 

  15. Shen X, Zhou Z, Song F, Meng X. Synthesis and magnetic properties of nanocomposite Ni1−xCoxFe2O4–BaTiO3 fibers by organic gel-thermal decomposition process. J Sol-Gel Sci Technol. 2010;53:405–11.

    Article  CAS  Google Scholar 

  16. Stoia M, Barvinschi P, Barbu-Tudoran L. Thermal decomposition of metal nitrates PVA–TEOS gels for obtaining M(II) ferrite/silica nanocomposites. J Therm Anal Calorim. 2013;113:21.

    Article  CAS  Google Scholar 

  17. Stefanescu M, Stoia M, Stefanescu O, Barvinschi P. Obtaining of Ni0.65Zn0.35Fe2O4 nanoparticles at low temperature starting from metallic nitrates and polyols. J Therm Anal Calorim. 2010;99:459–64.

    Article  CAS  Google Scholar 

  18. Barvinschi P, Barbu M, Stoia M, Stefanescu M. Evaluation of cation influence on the formation of M(II)Cr2O4 during the thermal decomposition of mixed carboxylate type precursors. J Therm Anal Calorim. 2013;112:359–66.

    Article  CAS  Google Scholar 

  19. Stoia M, Caizer C, Stefanescu M, Barvinschi P, Julean I. Obtaining of Ni0.65Zn0.35Fe2O4/SiO2 nanocomposites by thermal decomposition of complex compounds embedded in silica matrix. J Therm Anal Calorim. 2007;88:193–200.

    Article  CAS  Google Scholar 

  20. Stoia M, Caizer C, Stefanescu M, Barvinschi P, Barbu-Tudoran L. Characterisation of nickel–zinc ferrite/silica nanocomposites with low ferrite concentration obtained by an improved modified sol–gel method. J Sol-Gel Sci Technol. 2011;58:126–34.

    Article  CAS  Google Scholar 

  21. Mihalca I, Ercuta A. Structural relaxation in Fe70Cr10.5P11.5Mn1.5C6.5 amorphous alloy. J Optoelectron Adv Mater. 2003;5:245–50.

    CAS  Google Scholar 

  22. Song Q, Ding Y, Wang ZL, Zhang ZJ. Tuning the thermal stability of molecular precursors for the nonhydrolytic synthesis of magnetic MnFe2O4 spinel nanocrystals. Chem Mater. 2007;19(19):4633–8.

    Article  CAS  Google Scholar 

  23. Stoia M, Tudoran LB, Barvinschi P. Nanosized zinc and magnesium ferrites obtained from PVA–metal nitrates solutions. J Therm Anal Calorim. 2013;113:11–9.

    Article  CAS  Google Scholar 

  24. Stefanescu M, Sasca V, Birzescu M. Thermal behaviour of the homopolynuclear glyoxylate complex combinations with Cu(II) and Cr(III). J Therm Anal Calorim. 2003;72(2):515–24.

    Article  CAS  Google Scholar 

  25. Stefanescu M, Stefanescu O, Stoia M, Lazau C. Thermal decomposition of some metal-organic precursors. Fe2O3 nanoparticles. J Therm Anal Calorim. 2007;88(1):27–32.

    Article  CAS  Google Scholar 

  26. Stoia M, Muntean C, Militaru B. Fine MnFe2O4 nanoparticles for potential environmental applications synthesis and characterization. J Therm Anal Calorim. 2015;121:1003–10.

    Article  CAS  Google Scholar 

  27. Dong CH, Wang GX, Shi L, Guo DW, Jiang CJ, Xue DS. Investigation of the thermal stability of Mn ferrite particles synthesized by a modified co-precipitation method. Sci China Phys Mech Astron. 2013;56:568–72.

    Article  CAS  Google Scholar 

  28. Deraz NM, Alarif A. Controlled synthesis, physicochemical and magnetic properties of nano-crystalline Mn ferrite. Syst Int J Electrochem Sci. 2012;7:5534–43.

    CAS  Google Scholar 

  29. Stefanescu O, Davidescu C, Stefanescu M, Stoia M. Preparation of FexOy/SiO2 nanocomposites by thermal decomposition of some carboxylate precursors formed inside the silica matrix. J Therm Anal Calorim. 2009;97:203–8.

    Article  CAS  Google Scholar 

  30. Melnikov P, Nascimento VA, Arkhangelsky IV, Zanoni Consolo LZ, de Oliveira LCS. Thermal decomposition mechanism of iron(III) nitrate and characterization of intermediate products by the technique of computerized modeling. J Therm Anal Calorim. 2014;115:145–51.

    Article  CAS  Google Scholar 

  31. Gadalla AM, Yu H-F. Thermal decomposition of Fe(III) nitrate and its aerosol. J Mater Res. 1990;5(6):1233–6.

    Article  CAS  Google Scholar 

  32. De Bruijn TJW, De Jong WA, Van Den Berg PJ. Thermal decomposition of aqueous manganese nitrate solutions and anhydrous manganese nitrate. Part 1. Mechanism. 1981;45(3):265–78.

    Google Scholar 

  33. Nohman ACH, Ismail HM, Hussein GAM. Thermal and chemical events in the decomposition course of manganese compounds. J Anal Appl Pyrol. 1995;34:265–78.

    Article  CAS  Google Scholar 

  34. Gallagher PK, Schrey F, Prescott B. The thermal decomposition of aqueous manganese(II) nitrate solution. Thermochim Acta. 1971;2(5):405–12.

    Article  CAS  Google Scholar 

  35. Nohman Titantah JT, Karttunen M. Water dynamics: relation between hydrogen bond bifurcations, molecular jumps, local density & hydrophobicity. Sci Rep. 2013. doi:10.1038/srep02991.

    Google Scholar 

  36. Żurowska B, Mroziński J, Ochocki J. Coordination properties of the diethyl 2-quinolilmethylphosphonate ligand with chloride and nitrate transition-metal salts. Mater Sci Pol. 2007;25(4):1063–74.

    Google Scholar 

  37. Xiao-hong G, Guang-hao C, Chii S. TR-FTIR and XPS study on the structure of complexes formed upon the adsorption of simple organic acids on aluminum hydroxide. J Environ Sci. 2007;19:438–43.

    Article  Google Scholar 

  38. Linga Raju C, Rao JL, Reddy BCV, Brahmam KV. Thermal and IR studies on copper doped polyvinyl alcohol. Bull Mater Sci. 2007;30(3):215–8.

    Article  Google Scholar 

  39. Stoica-Guzun A, Jecu L, Gheorghe A, Raut I, Stroescu M, Ghiurea M, Danila M, Jipa I, Fruth V. Biodegradation of Poly(vinyl alcohol) and Bacterial Cellulose Composites by Aspergillus niger. J Polym Environ. 2011;19:69–79.

    Article  CAS  Google Scholar 

  40. Krishnan K, Krishnan RS. Raman and infrared spectra of ethylene glycol. Proc Indian Acad Sci. 1966;64(2):111–22.

    CAS  Google Scholar 

  41. ***The Powder Diffraction File (PDF 4+) JCPDS—Joint Committee on Powder Diffraction Standards, ICDD—International Center for Diffraction Data, 2012.

  42. Stoia M, Stefanescu O, Vlase G, Barbu-Tudoran L, Barbu M, Stefanescu M. Silica matrices for embedding of magnetic nanoparticles. J Sol-Gel Sci Technol. 2012;62:31–40.

    Article  CAS  Google Scholar 

  43. Goodarz Naseri M, Bin Saion E, Abbastabar Ahangar H, Hashim M, Shaari AH. Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method. J Magn Magn Mater. 2011;323(13):1745–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS–UEFISCDI, Project Number PN-II-RU-TE-2014-4-0514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Stoia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3842 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoia, M., Păcurariu, C., Istratie, R. et al. Thermoanalytical techniques. J Therm Anal Calorim 125, 1249–1263 (2016). https://doi.org/10.1007/s10973-016-5394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5394-x

Keywords

Navigation