Skip to main content
Log in

The thermal and detailed kinetic analysis of dipicolinate complexes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The [Cu(pydc)(eim)3]·H2O (1), [Cu(pydc)(4hp)(H2O)] (2) and [Ni(pydc)(3hp)(H2O)2][Cu(pydc)(3hp)(H2O)2]·3H2O (3) complexes (H2pydc = 2,6-pyridinedicarboxylic acid or dipicolinic acid, eim = 2-ethylimidazole, 4hp = 4-hydroxypyridine, 3hp = 3-hydroxypyridine) were studied by thermo-gravimetric analysis at an ambient temperature up to 1000 K under nitrogen atmosphere. The complexes are stable about 350 K, and the decomposition reactions were carried out in seven, three and four stages for the complexes 1, 2 and 3, respectively. Following detailed thermo-gravimetrical analysis of the complexes, the decomposition mechanism was suggested for all complexes. The kinetic analysis of all decomposition stages of each compound was performed except for the final stages. The values of the activation energy, E a, were obtained using model-free Kissinger–Akahira–Sunose and Flyn–Wall–Ozawa methods for all decomposition stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Scheme 4
Fig. 3
Scheme 5
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Batten SR, Robson R. Interpenetrating nets: ordered, periodic entanglement. Angew Chem Int Ed. 1998;37:1460–94.

    Article  Google Scholar 

  2. Murray LJ, Dincă M, Long JR. Hydrogen storage in metal–organic frameworks. Chem Soc Rev. 2009;38:1294–314.

    Article  CAS  Google Scholar 

  3. Li JR, Kuppler JR, Zhou HC. Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev. 2009;38:1477–504.

    Article  CAS  Google Scholar 

  4. Ferey G. Hybrid porous solids: past, present, future. Chem Soc Rev. 2008;37:191–214.

    Article  CAS  Google Scholar 

  5. Zheng SL, Chen XM. Recent advances in luminescent monomeric, multinuclear, and polymeric Zn(II) and Cd(II) coordination complexes. Aust J Chem. 2004;57:703–12.

    Article  CAS  Google Scholar 

  6. Maspoch D, Ruiz-Molina D, Veciana J. Old materials with new tricks: multifunctional open-framework materials. Chem Soc Rev. 2007;36:770–818.

    Article  CAS  Google Scholar 

  7. Maspoch D, Ruiz-Molina D, Veciana J. Magnetic nanoporous coordination polymers. J Mater Chem. 2004;14:2713–23.

    Article  CAS  Google Scholar 

  8. Batten SR, Murray KS. Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide. Coord Chem Rev. 2003;246:103–30.

    Article  CAS  Google Scholar 

  9. Kitagawa S, Noro SI, Nakamura T. Pore surface engineering of microporous coordination polymers. Chem Commun. 2006;7:701–7.

    Article  Google Scholar 

  10. Kepert CJ. Advanced functional properties in nanoporous coordination framework materials. Chem Commun. 2006;7:695–700.

    Article  Google Scholar 

  11. Kitagawa S, Uemura K. Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chem Soc Rev. 2005;34:109–19.

    Article  CAS  Google Scholar 

  12. Wang L, Duan L, Wong E, Xiao D, Li Y, Lan Y, Xu L, Hu C. Novel hydrogen-bonded three-dimensional network complexes containing cobalt-pyridine-2,6-dicarboxylic acid. Transit Met Chem. 2004;29:212–5.

    Article  CAS  Google Scholar 

  13. Yang LQ, Crans DC, Cour A, Anderson OP, Kaszynski PM, Godzala ME, Austin LD, Willsky GR. Cobalt(II) and cobalt(III) dipicolinate complexes: solid state, solution, and in vivo insulin-like properties. Inorg Chem. 2002;41(19):4859–71.

    Article  CAS  Google Scholar 

  14. Sileo EE, Blesa MA, Rigotti G, Rivero BE, Castellano EE. The crystal chemistry of copper(II) dipicolinates. Polyhedron. 1996;15(24):4531–40.

    Article  CAS  Google Scholar 

  15. Ma C, Chen C, Liu Q, Liao D, Li L. The first structurally characterized trinuclear dipicolinato manganese complex and its conversion into a mononuclear species by ligand substitution. Eur J Inorg Chem. 2003;6:1227–31.

    Article  Google Scholar 

  16. Ranjbar M, Aghabozorg H, Moghimi A. A seven-coordinate pyridine-2,6-dicarboxylate-bridged cadmium(II) complex, at 110 K. Acta Crystallogr. 2002;E58:m304.

    Google Scholar 

  17. Devereux M, McCann M, Leon V, McKee V, Ball RJ. Synthesis and catalytic activity of manganese(II) complexes of heterocyclic carboxylic acids: X-ray crystal structures of [Mn(pyr)2]n, [Mn(dipic)(bipy)2]·4.5H2O and [Mn(chedam)(bipy)]·H2O (pyr = 2-pyrazinecarboxylic acid; dipic = pyridine-2,6-dicarboxylic acid; chedam = chelidamic acid(4-hydroxypyridine-2,6-dicarboxylic acid); bipy = 2,2-bipyridine). Polyhedron. 2002;21:1063–71.

    Article  CAS  Google Scholar 

  18. Ma C, Fan C, Chen C, Liu Q. Aqua(dipicolinato-3O2, N, O6)(1,10-phenanthroline-2N, N′)manganese(II) monohydrate. Acta Crystallogr C. 2002;58:m553–5.

    Article  Google Scholar 

  19. Koman M, Melnik M, Moncol J. Crystal and molecular structure of copper(II)(pyridine-2,6-dicarboxylato)(2,6-dimethanolpyridine). Inorg Chem Commun. 2000;3:262–6.

    Article  CAS  Google Scholar 

  20. Mao L, Wang Y, Qi Y, Cao M, Hu C. A novel three-dimensional supramolecular framework with one-dimensional channels: synthesis and crystal structure of [Cu(DPC)(H2O)3] (H2DPC = Pyridine-2,6-dicarboxylic acid). J Mol Struct. 2004;688:197–201.

    Article  CAS  Google Scholar 

  21. Udo S. Chemical constituents of Natto, fermented soybeans. I. The occurrence of dipicolinic acid in natto and its behavior on micro. ovrddot. organisms. J Agr Chem Soc Jpn. 1936;12:386–94.

    CAS  Google Scholar 

  22. Powell JF, Strange RE. Biochemical changes occurring during the germination of bacterial spores. Biochem J. 1953;54(2):205–9.

    Article  CAS  Google Scholar 

  23. Singh RP. Studies with picolinamide on development of thermo resistance in bacilli. Curr Sci. 1987;56:1232–4.

    CAS  Google Scholar 

  24. Crans DC, Mahroof-Tahir M, Johnson MD, Wilkins PC, Yang LQ, Robbins K, Johnson A, Alfano JA, Godzala ME, Austin LT, Willsky GR. Vanadium(IV) and vanadium(V) complexes of dipicolinic acid and derivatives. Synthesis, X-ray structure, solution state properties: and effects in rats with STZ-induced diabetes. Inorg Chim Acta. 2003;356:365–78.

    Article  CAS  Google Scholar 

  25. Crans DC, Yang LQ, Alfano JA, Chi LAH, Jin WZ, Mahroof-Tahir M, Robbins K, Toloue MM, Chan LK, Plante AJ, Grayson RZ, Willsky GR. (4-Hydroxypyridine-2,6-dicarboxylato)oxovanadate(V)—a new insulin-like compound: chemistry, effects on myoblast and yeast cell growth and effects on hyperglycemia in rats with STZ-induced diabetes. Coord Chem Rev. 2003;237:13–22.

    Article  CAS  Google Scholar 

  26. Willsky GR, Chi LH, Godzala M, Kostyniak PJ, Smee JJ, Trujillo AM, Alfano JA, Ding W, Hu Z, Crans DC. Anti-diabetic effects of a series of vanadium dipicolinate complexes in rats with streptozotocin-induced diabetes. Coord Chem Rev. 2011;255:2258–69.

    Article  CAS  Google Scholar 

  27. Chatterjee M, Maji M, Ghosh S, Mak TCW. Studies of V(III) complexes with selected α-N-heterocyclic carboxylato NO donor ligands: structure of a new seven-coordinated pentagonal bipyramidal complex containing picolinato ligands. J Chem Soc Dalton Trans. 1998;21:3641–6.

    Article  Google Scholar 

  28. Nathan LC, Mai TD. Influence of the spectator cation on the structure of anionic pyridine-2,6-dicarboxylato complexes of cobalt(II), nickel(II), and copper(II). J Chem Cryst. 2000;30(8):509–18.

    Article  CAS  Google Scholar 

  29. Yang L, Crans DC, Miller SM, Cour A, Anderson OP, Kaszynski PM, Godzala ME, Austin LD, Willsky GR. Cobalt(II) and cobalt(III) dipicolinate complexes: solid state, solution, and in vivo insulin-like properties. Inorg Chem. 2002;41:4859–71.

    Article  CAS  Google Scholar 

  30. Douki T, Setlow B, Setlow P. Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species. Photochem Photobiol Sci. 2005;4:591–7.

    Article  CAS  Google Scholar 

  31. Laine P, Gourdon A, Launay JP. Chemistry of iron with dipicolinic acid. 2. Bridging role of carboxylate groups in solid state structures. Inorg Chem. 1995;34:5138–49.

    Article  CAS  Google Scholar 

  32. Xie L, Wei Y, Wang Y, Hou H, Fan Y, Zhu Y. 2D and 3D binuclear cobalt supramolecular complexes: synthesis and crystal structures. J Mol Struct. 2004;692:201–7.

    Article  CAS  Google Scholar 

  33. Qi Y, Wang Y, Fan H, Cao M, Mao L, Hu C, Wang E, Hu N, Jia H. Structure characterization and physical properties of a complex with supramolecular architectures Co2(2,6-DPC)2Co(H2O)5·2H2O (DPC 2,6-pyridinedicarboxylate). J Mol Struct. 2004;694:73–8.

    Article  CAS  Google Scholar 

  34. Wang L, Duan L, Wang E, Xiao D, Li Y, Lan Y, Xu L, Hu C. Novel hydrogen-bonded three-dimensional network complexes containing cobalt-pyridine-2,6-dicarboxylic acid. Transit Met Chem. 2004;29:212–5.

    Article  CAS  Google Scholar 

  35. Wang L, Duan L, Xiao D, Wang E, Hu C. Synthesis of novel copper compounds containing isonicotinic acid and/or 2,6-pyridinedicarboxylic acid: third-order nonlinear optical properties. J Coord Chem. 2004;57:1079–87.

    Article  Google Scholar 

  36. Uzun N, Çolak AT, Emen FM, Kismali G, Meral O, Alpay M, Çılgı GK, Şahin E. The syntheses, crystal structure, thermal analysis, and anticancer activities of novel dipicolinate complexes. J Coord Chem. 2015;68(6):949–67.

    Article  CAS  Google Scholar 

  37. Fernandes DM, Hechenleitner AAW, Pineda EAG. Kinetic study of the thermal decomposition of poly(vinyl alcohol)/kraft lignin derivative blends. Thermochim Acta. 2006;441:101–9.

    Article  CAS  Google Scholar 

  38. Ak M, Çılgı GK, Kuru FD, Çetişli H. Thermal decomposition kinetics of polypyrrole and its star shaped copolymer. J Therm Anal Calorim. 2013;111:1627–32.

    Article  CAS  Google Scholar 

  39. Çılgı GK, Cetişli H, Donat R. Thermal and kinetic analysis of uranium salts, part 2. Uranium(VI) acetate hydrates. J Therm Anal Calorim. 2012;110:127–35.

    Article  Google Scholar 

  40. Kaljuvee T, Rudjak I, Edro E, Trikkel A. Heating rate effect on the thermal behavior of ammonium nitrate and its blends with limestone and dolomite. J Therm Anal Calorim. 2009;97:215–21.

    Article  CAS  Google Scholar 

  41. Chaiyo N, Muanghlua R, Niemcharoen S, Boonchom B, Seeharaj P, Vittayakorn N. Non-isothermal kinetics of the thermal decomposition of sodium oxalate Na2C2O4. J Therm Anal Calorim. 2012;107:1023–9.

    Article  CAS  Google Scholar 

  42. Vecchio S, Materazzi S, Kurdziel K. Thermal decomposition kinetics of palladium(II) 1-allylimidazole complexes. Int J Chem Kinet. 2005;37:667–74.

    Article  CAS  Google Scholar 

  43. Cilgi GK, Cetişli H. Thermal decomposition kinetics of aluminum sulfate hydrate. J Therm Anal Calorim. 2009;98:855–61.

    Article  CAS  Google Scholar 

  44. Favergeon L, Pijolat M, Helbert C. A mechanism of nucleation during thermal decomposition of solids. J Mater Sci. 2008;43:4675–83.

    Article  CAS  Google Scholar 

  45. Koga N, Tanaka H. A physico-geometric approach to the kinetics of solid-state reactions as exemplified by thermal dehydration and decomposition of inorganic solids. Thermochim Acta. 2002;388:41–61.

    Article  CAS  Google Scholar 

  46. Cetişli H, Çılgı GK, Donat R. Thermal and kinetic analysis of uranium salts, part 1. Uranium (VI) oxalate hydrates. J Therm Anal Calorim. 2012;108:1213–22.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Dumlupinar University, Project No. 2012/22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Tolga Çolak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzun, N., Çolak, A.T., Emen, F.M. et al. The thermal and detailed kinetic analysis of dipicolinate complexes. J Therm Anal Calorim 124, 1735–1744 (2016). https://doi.org/10.1007/s10973-016-5251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5251-y

Keywords

Navigation