Skip to main content

Advertisement

Log in

Evaluation of compatibility between Schinopsis brasiliensis Engler extract and pharmaceutical excipients using analytical techniques associated with chemometric tools

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Compatibility studies comprise an important step in pre-formulation since they allow the identification of the excipients most compatible with herbal extracts from different analytical techniques. The objective of this work is to evaluate the compatibility between the nebulized extract of S. brasiliensis Engler with pharmaceutical excipients using analytical techniques associated with chemometric tools. The extract was nebulized through aspersion and produced from the hydroalcoholic extract of the bark of S. brasiliensis Engler. Binary mixtures were produced in various proportions using the following pharmaceutical excipients: starch, microcrystalline cellulose (Avicel® 101 and 102), lactose, magnesium stearate, PVP K-30 and talc. The samples were analyzed by optical microscopy, differential scanning calorimetry and X-ray diffraction (XRD). With the data obtained from DSC curves, matrices for hierarchical cluster analysis (HCA) and principal component analysis (PCA) were made. Using microscopy, an amorphous formation and/or crystalline components could be seen. In DSC curves, as well as in PCA and HCA analyses, possible interactions were identified with starch, lactose and magnesium stearate. This was confirmed by XRD. The starch showed the greatest interaction. The results indicate that the DSC technique associated with chemometric tools contributed to a better interpretation of compatibility studies and that microcrystalline cellulose, PVP K-30 and talc were the most compatible excipients in relation to the extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chaves TP, Dantas IC, Felismino DC, Vieira KVM, Clementino ELC, Costa LS. Atividade antimicrobiana das folhas de Schinopsis brasiliensis Engl. Biofar. 2011;5:11–7.

    Google Scholar 

  2. Saraiva AM, Castro RHA, Cordeiro RP, Peixoto-Sobrinho TJS, Castro VTNA, Amorim ELC, Xavier HS, Pisciottano MNC. In vitro evaluation of antioxidant, antimicrobial and toxicity properties of extracts of Schinopsis brasiliensis Engl. (Anacardiaceae). Afr J Pharm Pharmacol. 2011;5:1724–31.

    Article  CAS  Google Scholar 

  3. Silva MSP, Brandão DO, Chaves TP, Formiga Filho ALN, Costa EMMB, Santos VL, Medeiros ACD. Study bioprospecting of medicinal plant extracts of the semiarid northeast: contribution to the control of oral microorganisms. Evid-Based Compl Alt. 2012;. doi:10.1155/2012/681207.

    Google Scholar 

  4. Cardoso MP, David JM, David JP. A new alkylphenol from Schinopsis brasiliensis Engl. Nat Prod Res. 2005;19:431–3.

    Article  CAS  Google Scholar 

  5. Saraiva AM, Saraiva CL, Cordeiro RP, Soares RR, Xavier HR, Caetano N. Atividade antimicrobiana e sinérgica das frações das folhas de Schinopsis brasiliensis Engl. frente a clones multirresistentes de Staphylococcus aureus. Rev Bras Plantas Med. 2013;15:199–207.

    Article  Google Scholar 

  6. Fernandes FHA, Santana CP, Santos RL, Correia LP, Conceição MM, Macêdo RO, Medeiros ACD. Thermal characterization of dried extract of medicinal plant by DSC and analytical techniques. J Therm Anal Calorim. 2013;113:443–7.

    Article  CAS  Google Scholar 

  7. Gupta MM, Saini TR. Preformulation parameters characterization to design, development and formulation of vancomycin hydrochloride tablets for pseudomembranous colitis. Int J Pharm Res Dev. 2002;1:1–7.

    Google Scholar 

  8. Narang AS, Desai D, Badawy S. Impact of excipient interactions on solid dosage form stability. Pharm Res. 2012;29:2660–83.

    Article  CAS  Google Scholar 

  9. Medeiros ACD, Cervantes NAB, Gomes APB, Macêdo RO. Thermal stability of prednisone drug and tablets. J Therm Anal Calorim. 2001;64:745–50.

    Article  Google Scholar 

  10. Mura P, Furlanetto S, Cirri M, Maestrelli M, Marras AM, Pinzautti S. Optimization of glibenclamide tablet composition through the combined use of differential scanning calorimetry and d-optimal mixture experimental design. J Pharm Biomed Anal. 2005;37:65–71.

    Article  CAS  Google Scholar 

  11. Tita B, Fulias A, Bandur G, Marian E, Tita D. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J Pharm Biomed Anal. 2011;56:221–7.

    Article  CAS  Google Scholar 

  12. Alves-Silva L, Sá-Barreto LCL. LIMA EM, Cunha-Filho MSS. Preformulation studies of itraconazole associated with benznidazole and pharmaceutical excipients. Thermochim Acta. 2014;575:29–33.

    Article  CAS  Google Scholar 

  13. Detoisien T, Arnoux M, Taulelle P, Colson D, Klein JP, Veesler S. Thermal analysis: a further step in characterizing solid forms obtained by screening crystallization of an API. Int J Pharm. 2012;403:29–36.

    Article  Google Scholar 

  14. Chadha R, Bhandari S. Drug-excipient compatibility screening—Role of thermoanalytical and spectroscopic techniques. J Pharm Biomed Anal. 2014;87:82–97.

    Article  CAS  Google Scholar 

  15. Gallo L, Llabot JM, Allemandi D, Bucalá V, Piña J. Influence of spray-drying operating conditions on Rhamnus purshiana (Cáscara sagrada) extract powder physical properties. Powder Technol. 2011;208:205–14.

    Article  CAS  Google Scholar 

  16. Medeiros ACD, Medeiros IA, Macêdo RO. Thermal studies of Albizia inopinata crude extract in the presence of cyclodextrin and Aerosil® by TG and DSC coupled to the photovisual system. Thermochim Acta. 2002;392–393:93–8.

    Article  Google Scholar 

  17. Costa RS, Negrão CAB, Camelo SRP, Ribeiro-Costa RM, Barbosa WLR, Costa CEF, Silva Júnior JOS. Investigation of thermal behavior of Heliotropium indicum L. lyophilized extract by TG and DSC. J Therm Anal Calorim. 2015;111:1959–64.

    Article  Google Scholar 

  18. Wesolowski M, Rojek B. Thermogravimetric detection of incompatibilities between atenolol and excipients using multivariate techniques. J Therm Anal Calorim. 2013;113:169–77.

    Article  CAS  Google Scholar 

  19. Wesolowski M, Rojek B. Thermal decomposition and elemental composition of medicinal plant materials–leaves and flowers principal component analysis of the results. Thermochim Acta. 2003;397:171–80.

    Article  CAS  Google Scholar 

  20. Melo CAD, Silva P, Gomes AA, Fernandes DD, Veras G, Medeiros ACD. Classification of tablets containing dipyrone, caffeine and orphenadrine by near infrared spectroscopy and chemometric tools. J Braz Chem Soc. 2015;24:991–7.

    Google Scholar 

  21. Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. Chicago: Apha; 2009.

    Google Scholar 

  22. Macedo RO, Do Nascimento TP, Veras JW. Compatibility and stability studies of propranolol hydrochloride binary mixtures and tablets for TG and DSC-photovisual. J Therm Anal Calorim. 2002;67:483–9.

    Article  CAS  Google Scholar 

  23. Bazzo GC, Silva MAS. Estudo termoanalítico de comprimidos revestidos contendo captopril através de termogravimetria (TG) e calorimetria exploratória diferencial (DSC). Rev Bras Ciênc Farmac. 2005;41:319–22.

    Google Scholar 

  24. Tita B, Jurca T, Fulias A, Marian E, Tita B. Compatibility study of the acetylsalicylic acid with different solid dosage forms excipients. J Therm Anal Calorim. 2013;112:403–19.

    Google Scholar 

  25. Wesolowski M, Rojek B, Piotroska J. Application of chemometrically processed thermogravimetric data for identification of baclofen–excipient interactions. J AOAC Int. 2012;95:691–8.

    Article  CAS  Google Scholar 

  26. Newman AW, Byrn SR. Solid-state analysis of the active pharmaceutical ingredient in drug products. Dr Discov Today. 2003;8:898–905.

    Article  CAS  Google Scholar 

  27. Cano-Chauca M, Stringheta PC, Ramos AS, Cal-Vidal J. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov Food Sci Emerg Technol. 2005;6:420–8.

    Article  CAS  Google Scholar 

  28. Gallo L, Piña J, Bucalá V, Allemandi D, Rámirez-Rigo MV. Development of a modified-release hydrophilic matrix system of a plant extract based on co-spray-dried powders. Powder Technol. 2013;241:252–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fapesq, Propesq/UEPB, Capes and CNPq (Process No.: 562957/2010-3). The authors especially thank Professor Ivan Coelho Dantas (in memoriam) for indicating the plant to be studied in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cláudia D. Medeiros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, F.H.A., de Almeida, V.E., de Medeiros, F.D. et al. Evaluation of compatibility between Schinopsis brasiliensis Engler extract and pharmaceutical excipients using analytical techniques associated with chemometric tools. J Therm Anal Calorim 123, 2531–2542 (2016). https://doi.org/10.1007/s10973-016-5241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5241-0

Keywords

Navigation