Skip to main content
Log in

Tetranuclear dioxomolybdenum (VI) cluster anion, hydrogen bond interaction with 1,2-di(4-pyridyl)ethylene

Crystal structure and electrochemical measurement

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Tetranuclear dioxomolybdenum cluster complex (TMC) [C12H11N2 +]2[Mo4O10(OCH3) 2−6 ]·CH3OH has been synthesized by the reaction of MoO2(acac)2 with 1,2-di(4-pyridyl)ethylene. The cluster core is composed of four molybdenum atoms arranged in the rhombus shape bridged by two oxo ligands, one bridging O, and three methanol molecules. The TMC [C12H11N2 +]2[Mo4O10(OCH3) 2−6 ]·CH3OH is comprised of two moieties of pyridyl cation [C12H11N2 +]2 (1,2-di(4-pyridyl)ethylene) and cluster anion [Mo4O10(OCH3) 2−6 ]. The cluster is stabilized by two intermolecular interactions (hydrogen bond and ππ stacking interactions). The 1D chain is formed as a result of the hydrogen interaction between (1, 2-di(4-pyridyl)ethylene) and [Mo4O10(OCH3) 2−6 ]. Thermogravimetric analysis clearly indicated the thermal stability of the cluster. Electrochemical measurement showed two irreversible reduction processes at scan rates (−1 to −2 V) and an irreversible one-electron oxidation at +0.79 V. Optical absorption measurement shows that the fundamental absorption edge obeys Tauc’s relation for the allowed non-direct transition. Optical band gap (E g) values equal 2.4 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao Y-X, Wu X-N, Ma J-B, He S-G, Ding X-L. Characterization and reactivity of oxygen-centred radicals over transition metal oxide clusters. Phys Chem Chem Phys. 2011;13:1925–38.

    Article  CAS  Google Scholar 

  2. Cabeza JA, García-Álvarez P. The N-heterocyclic carbene chemistry of transition-metal carbonyl clusters. Chem Soc Rev. 2011;40:5389–405.

    Article  CAS  Google Scholar 

  3. Thompson LK, Dawe LN. Magnetic properties of transition metal (Mn(II), Mn(III), Fe(II), Fe(III), Ni (II), Cu (II)) and lanthanide (Gd(III), Dy(III)) clusters and [nxn] grids; isotropic exchange and SMM behavior. Coord Chem Rev. 2015;289:13–31.

    Article  Google Scholar 

  4. Zoberbier T, Chamberlain TW, Biskupek J, Kuganathan N, Eyhusen S, Bichoutskaia E, et al. Interactions and reactions of transition metal clusters with the interior of single-walled carbon nanotubes imaged at the atomic scale. J Am Chem Soc. 2012;134:3073–9.

    Article  CAS  Google Scholar 

  5. Abe M, Michi T, Sato A, Kondo T, Zhou W, Ye S, et al. Electrochemically controlled layer-by-layer deposition of metal-cluster molecular multilayers on gold. Angew Chem Int Ed. 2003;42:2912–5.

    Article  CAS  Google Scholar 

  6. Gao C-Y, Zhao L, Wang M-X. Designed synthesis of metal cluster-centered pseudo-rotaxane supramolecular architectures. J Am Chem Soc. 2011;133:8448–51.

    Article  CAS  Google Scholar 

  7. Gatteschi D, Pardi L, Barra A, Müller A, Döring J. Layered magnetic structure of a metal cluster ion. Nature. 1991;354:463–5.

    Article  CAS  Google Scholar 

  8. Mathur P, Chakrabarty D, Hossain MM, Rashid RS, Rugmini V, Rheingold AL. Synthesis and characterization of the new mixed-metal cluster complexes [Fe2 M (. mu. 3-E) 2 (CO) 10](M = W, E = Se, Te; M = Mo, E = Se). Crystal structure of [Fe2 W (. mu. 3-Te) 2 (CO) 10]. Inorg Chem. 1992;31:1106–8.

    Article  CAS  Google Scholar 

  9. Chandrasekhar V, Bag P, Speldrich M, van Leusen J, Kögerler P. Synthesis, structure, and magnetic properties of a new family of tetra-nuclear {Mn2IIILn2}(Ln = Dy, Gd, Tb, Ho) clusters with an arch-type topology: single-molecule magnetism behavior in the dysprosium and terbium analogues. Inorg Chem. 2013;52:5035–44.

    Article  CAS  Google Scholar 

  10. Chu H-A, Nguyen AP, Debus RJ. Site-directed photosystem II mutants with perturbed oxygen-evolving properties. 1. Instability or inefficient assembly of the manganese cluster in vivo. Biochem. 1994;33:6137–49.

    Article  CAS  Google Scholar 

  11. Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc. 2008;130:5883–5.

    Article  CAS  Google Scholar 

  12. Alexandropoulos DI, Fournet A, Cunha-Silva L, Mowson AM, Bekiari V, Christou G, et al. Fluorescent naphthalene diols as bridging ligands in LnIII cluster chemistry: synthetic, structural, magnetic, and photophysical characterization of LnIII8 “Christmas Stars”. Inorg Chem. 2014;53:5420–2.

    Article  CAS  Google Scholar 

  13. Siu SK-L, Ko C-C, Au VK-M, Yam VW-W. Synthesis, characterization and photophysical studies of luminescent dinuclear and trinuclear copper (I) alkynyl phosphines. J Clust Sci. 2014;25:287–300.

    Article  CAS  Google Scholar 

  14. Li D-S, Zhao J, Wu Y-P, Liu B, Bai L, Zou K, et al. Co5/Co8–Cluster-based coordination polymers showing high-connected self-penetrating networks: syntheses, crystal structures, and magnetic properties. Inorg Chem. 2013;52:8091–8.

    Article  CAS  Google Scholar 

  15. Ungur L, Thewissen M, Costes J-P, Wernsdorfer W, Chibotaru LF. Interplay of strongly anisotropic metal ions in magnetic blocking of complexes. Inorg Chem. 2013;52:6328–37.

    Article  CAS  Google Scholar 

  16. Castleman A Jr. Cluster structure and reactions: gaining insights into catalytic processes. Catal Lett. 2011;141:1243–53.

    Article  CAS  Google Scholar 

  17. Li Y, Liu JH-C, Witham CA, Huang W, Marcus MA, Fakra SC, et al. A Pt-cluster-based heterogeneous catalyst for homogeneous catalytic reactions: X-ray absorption spectroscopy and reaction kinetic studies of their activity and stability against leaching. J Am Chem Soc. 2011;133:13527–33.

    Article  CAS  Google Scholar 

  18. Wang Y-G, Yoon Y, Glezakou V-A, Li J, Rousseau R. The role of reducible oxide-metal cluster charge transfer in catalytic processes: new insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J Am Chem Soc. 2013;135:10673–83.

    Article  CAS  Google Scholar 

  19. Shan X-C, Jiang F-L, Yuan D-Q, Zhang H-B, Wu M-Y, Chen L, et al. A multi-metal-cluster MOF with Cu4I4 and Cu6S6 as functional groups exhibiting dual emission with both thermochromic and near-IR character. Chem Sci. 2013;4:1484–9.

    Article  CAS  Google Scholar 

  20. Wang M-X. Nitrogen and oxygen bridged calixaromatics: synthesis, structure, functionalization, and molecular recognition. Acc Chem Res. 2011;45:182–95.

    Article  Google Scholar 

  21. Han N, Wang F, Hou JJ, Yip SP, Lin H, Xiu F, et al. Tunable electronic transport properties of metal-cluster-decorated III–V nanowire transistors. Adv Mater. 2013;25:4445–51.

    Article  CAS  Google Scholar 

  22. Lu Y, Chen W. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev. 2012;41:3594–623.

    Article  CAS  Google Scholar 

  23. Weiss CJ, Groves AN, Mock MT, Dougherty WG, Kassel WS, Helm ML, Bullock RM. Synthesis and reactivity of molybdenum and tungsten bis (dinitrogen) complexes supported by diphosphine chelates containing pendant amines. Dalton Trans. 2012;41(15):4517–29.

    Article  CAS  Google Scholar 

  24. Holm RH, Solomon EI, Majumdar A, Tenderholt A. Comparative molecular chemistry of molybdenum and tungsten and its relation to hydroxylase and oxotransferase enzymes. Coord Chem Rev. 2011;255:993–1015.

    Article  CAS  Google Scholar 

  25. Jones S, Aldous A, Burkholder E, Zubieta J. Coordination chemistry of molybdenum oxides: construction of bimetallic organic–inorganic hybrid materials from Keggin clusters and copper-imine building blocks. Polyhedron. 2013;52:582–90.

    Article  CAS  Google Scholar 

  26. Brown-Xu SE, Chisholm MH, Durr CB, Lewis SA, Spilker TF, Young PJ. Molybdenum–molybdenum quadruple bonds supported by 9, 10-anthraquinone carboxylate ligands. Molecular, electronic, ground state and unusual photoexcited state properties. Chem Sci. 2014;5:2657–66.

    Article  CAS  Google Scholar 

  27. Zhao Y, Feng X, Xie Y, King RB, Schaefer H III. Molybdenum-molybdenum multiple bonding in homoleptic molybdenum carbonyls: comparison with their chromium analogues. J Phys Chem A. 2012;116:5698–706.

    Article  CAS  Google Scholar 

  28. Perez-Romo P, Potvin C, Manoli J-M, Chehimi M, Djéga-Mariadassou G. Phosphorus-doped molybdenum oxynitrides and oxygen-modified molybdenum carbides: synthesis, characterization, and determination of turnover rates for propene hydrogenation. J Catal. 2002;208:187–96.

    Article  CAS  Google Scholar 

  29. Quincy RB, Houalla M, Proctor A, Hercules DM. Distribution of molybdenum oxidation states in reduced molybdenum/titania catalysts: correlation with benzene hydrogenation activity. J Phys Chem. 1990;94:1520–6.

    Article  CAS  Google Scholar 

  30. Amini M, Haghdoost MM, Bagherzadeh M. Oxido-peroxido molybdenum (VI) complexes in catalytic and stoichiometric oxidations. Coord Chem Rev. 2013;257:1093–121.

    Article  CAS  Google Scholar 

  31. Wang C, Haeffner F, Schrock RR, Hoveyda AH. Molybdenum-based complexes with two aryloxides and a pentafluoroimido ligand: catalysts for efficient Z-selective synthesis of a macrocyclic trisubstituted alkene by ring-closing metathesis. Angew Chem Int Ed. 2013;52:1939–43.

    Article  CAS  Google Scholar 

  32. Houston JR, Burton AJ. Solvent dependent mechanistic pathways for η-O2CCH3 substitution from the [Mo3 (μ3-O) 2 (μ-O2CCH3) 6 (η-O2CCH3) 3] anion. Inorg Chim Acta. 2013;407:210–5.

    Article  CAS  Google Scholar 

  33. Marr SB, Carvel RO, Richens DT, Lee H-J, Lane M, Stavropoulos P. Comparison between iron and ruthenium reagents mediating GifIV-type oxygenation of cyclohexane. Inorg Chem. 2000;39:4630–8.

    Article  CAS  Google Scholar 

  34. Novitchi G, Riblet F, Scopelliti R, Helm L, Gulea A, Merbach AE. Mechanism of pyridine–ligand exchanges at the different labile sites of 3d heterometallic and mixed valence μ3-oxo trinuclear clusters. Inorg Chem. 2008;47:10587–99.

    Article  CAS  Google Scholar 

  35. Powell G, Richens DT. Redox chemistry of the acetato-bridged clusters [M3 (µ3-O) n (µ-O2CCH3) 6 (H2O) 3] 2 + (M = Mo, W, n = 1, 2): reversible redox between mono-µ3-oxo d8 MIII2MIV and d9 MIII3 forms. Dalton Trans. 2006;24:2959–63.

    Article  Google Scholar 

  36. Kirakci K, Kubát P, Dušek M, Fejfarová K, Šícha V, Mosinger J, et al. A highly luminescent hexanuclear molybdenum cluster—a promising candidate toward photoactive materials. Eur J Inorg Chem. 2012;2012:3107–11.

    Article  CAS  Google Scholar 

  37. Kirakci K, Kubát P, Langmaier J, Polívka T, Fuciman M, Fejfarová K, et al. A comparative study of the redox and excited state properties of (n Bu 4 N) 2 [Mo 6 X 14] and (n Bu 4 N) 2 [Mo 6 X 8 (CF 3 COO) 6](X = Cl, Br, or I). Dalton Trans. 2013;42:7224–32.

    Article  CAS  Google Scholar 

  38. Kirakci K, Fejfarová K, Kučeráková M, Lang K. Hexamolybdenum cluster complexes with pyrene and anthracene carboxylates: ultrabright red emitters with the antenna effect. Eur J Inorg Chem. 2014;2014:2331–6.

    Article  CAS  Google Scholar 

  39. CrysAlisPro Software system, v1.171.35.11 ed. Oxford, UK: Agilent Technologies UK Ltd; 2011.

  40. Sheldrick GM. A short history of SHELX. Acta Crystallogr Sect A: Found Crystallogr. 2007;64:112–22.

    Article  Google Scholar 

  41. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr. 2009;42:339–41.

    Article  CAS  Google Scholar 

  42. Ebrahimipour SY, Khabazadeh H, Castro J, Sheikhshoaie I, Crochet A, Fromm KM. cis-Dioxido-molybdenum (VI) complexes of tridentate ONO hydrazone Schiff base: synthesis, characterization, X-ray crystal structure, DFT calculation and catalytic activity. Inorg Chim Acta. 2015;427:52–61.

    Article  CAS  Google Scholar 

  43. Alghool S, Slebodnick C. Supramolecular structures of mononuclear and dinuclear dioxomolybdenum (VI) complexes via hydrogen bonds and π–π stacking, thermal studies and electrochemical measurements. Polyhedron. 2014;67:11–8.

    Article  CAS  Google Scholar 

  44. Alghool S, Slebodnick C, Karpin G. Supramolecular structure of Cu (II) and Zn (II) complexes based on 2, 2′: 6′, 2″-terpyridine, thermal and biological studies. J Therm Anal Calorim. 2015;119:1171–82.

    Article  CAS  Google Scholar 

  45. Davis E, Mott N. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag. 1970;22:0903–22.

    Article  CAS  Google Scholar 

  46. Alghool S, El-Halim HFA, Dahshan A. Synthesis, spectroscopic thermal and biological activity studies on azo-containing Schiff base dye and its Cobalt (II), Chromium (III) and Strontium (II) complexes. J Mol Struct. 2010;983:32–8.

    Article  CAS  Google Scholar 

  47. Qu Z-K, Yu K, Zhao Z-F, Z-h Su, Sha J-Q, Wang C-M, et al. An organic–inorganic hybrid semiconductor material based on Lindqvist polyoxomolybdate and a tetra-nuclear copper complex containing two different ligands. Dalton Trans. 2014;43:6744–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgment is made to Prof. Mohamed Hesham, inorganic chemistry, Taif University, for his supporting and his advice and for Dr. Jessica D. Knoll (Prof Karen J. Brewer’s group) for her helping in electrochemical measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Alghool.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghool, S., Slebodnick, C. Tetranuclear dioxomolybdenum (VI) cluster anion, hydrogen bond interaction with 1,2-di(4-pyridyl)ethylene. J Therm Anal Calorim 124, 847–855 (2016). https://doi.org/10.1007/s10973-015-5211-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5211-y

Keywords

Navigation