Skip to main content
Log in

Lifetime prediction of food and beverage packaging wastes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two different types of commercial polyethylene terephthalate (PET) and polypropylene (PP) samples used for beverage and food packaging were degraded for 25 months in isothermal oxidative condition at relatively low temperature (423 K). The results of this long-term experiment were compared with thermooxidative degradations of the same polymers that were carried out in a thermogravimetric (TG) analyzer, at higher temperatures (443 ≤ T ≤ 623 K), in isothermal heating conditions. The obtained set of experimental TG data was used to determine the apparent activation energy (E a) of degradation through two isothermal kinetic methods with the aim to verify the validity of lifetime predictions of polymers made by degradation experiments at higher temperatures. The results that were discussed and interpreted suggest caution in the extrapolation at lower temperature of degradation kinetics parameters obtained at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Howell BA. Kinetics of the thermal dehydrochlorination of vinylidene chloride barrier polymers. J Therm Anal Calorim. 2006;83:53–5.

    Article  CAS  Google Scholar 

  2. Blanco I, Siracusa V. Kinetic study of the thermal and thermo-oxidative degradations of polylactide-modified films for food packaging. J Therm Anal Calorim. 2013;112:1171–7.

    Article  CAS  Google Scholar 

  3. Silvestre C, Duraccio D, Cimmino S. Food packaging based on polymer nanomaterials. Prog Polym Sci. 2011;36:1766–82.

    Article  CAS  Google Scholar 

  4. Martino VP, Ruseckaite RA, Jiménez A. Thermal and mechanical characterization of plasticized poly (L-lactide-co-D, L-lactide) films for food packaging. J Therm Anal Calorim. 2006;86:707–12.

    Article  CAS  Google Scholar 

  5. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem. 2005;93:467–74.

    Article  CAS  Google Scholar 

  6. Shen L, Worrell E, Patel MK. Open-loop recycling: a LCA case study of PET bottle-to-fibre recycling. Resour Conserv Recycl. 2010;55:34–52.

    Article  Google Scholar 

  7. Ingrao C, Lo Giudice A, Bacenetti J, Khaneghah AM, Sant’Ana AS, Rana R, Siracusa V. Foamy polystyrene trays for fresh-meat packaging: life-cycle inventory data collection and environmental impact assessment. Food Res Int. 2015;76:418–26.

    Article  CAS  Google Scholar 

  8. Majumdar J, Cser F, Jollands MC, Shanks RA. Thermal properties of polypropylene post-consumer waste (PP PCW). J Therm Anal Calorim. 2004;78:849–63.

    Article  CAS  Google Scholar 

  9. Atik ID, Özen B, Tıhmınlıoğlu F. Water vapour barrier performance of corn-zein coated polypropylene (pp) packaging films. J Therm Anal Calorim. 2008;94:687–93.

    Article  Google Scholar 

  10. Langmaier F, Mládek M, Mokrejš P, Kolomazník K. Biodegradable packing materials based on waste collagen hydrolysate cured with dialdehyde starch. J Therm Anal Calorim. 2008;93:547–52.

    Article  CAS  Google Scholar 

  11. Cafiero L, Castoldi E, Tuffi R, Ciprioti SV. Identification and characterization of plastics from small appliances and kinetic analysis of their thermally activated pyrolysis. Polym Degrad Stab. 2014;109:307–18.

    Article  CAS  Google Scholar 

  12. Gupta YN, Chakraborty A, Pandey GD, Setua DK. Thermal and thermooxidative degradation of engineering thermoplastics and life estimation. J Appl Polym Sci. 2004;92:1737–48.

    Article  CAS  Google Scholar 

  13. Abate L, Blanco I, Motta O, Pollicino A, Recca A. The isothermal degradation of some polyetherketones: a comparative kinetic study between long-term and short-term experiments. Polym Degrad Stab. 2002;75:465–71.

    Article  CAS  Google Scholar 

  14. Abate L, Blanco I, Pollicino A, Recca A. Determination of degradation apparent activation energy values of polymers. J Therm Anal Calorim. 2002;70:63–71.

    Article  CAS  Google Scholar 

  15. Abate L, Blanco I, Orestano A, Pollicino A, Recca A. Kinetics of the isothermal degradation of model polymers containing ether, ketone and sulfone groups. Polym Degrad Stab. 2005;87:271–8.

    Article  CAS  Google Scholar 

  16. Blanco I, Abate L, Antonelli ML. The regression of isothermal thermogravimetric data to evaluate degradation E a values of polymers: a comparison with literature methods and an evaluation of lifetime prediction reliability. Polym Degrad Stab. 2011;96:1947–54.

    Article  CAS  Google Scholar 

  17. Blanco I, Abate L, Antonelli ML, Bottino FA. The regression of isothermal thermogravimetric data to evaluate degradation E a values of polymers: a comparison with literature methods and an evaluation of lifetime predictions reliability. Part II Polym Degrad Stab. 2013;98:2291–6.

    Article  CAS  Google Scholar 

  18. Blanco I. End-life prediction of commercial PLA used for food packaging through short term TGA experiments: real chance or low reliability? Chin J Polym Sci. 2014;32:681–9.

    Article  CAS  Google Scholar 

  19. Della Gatta G, Richardson MJ, Sarge SM, Stølen S. Standards, calibration, and guidelines in microcalorimetry. Part 2. Calibration standards for differential scanning calorimetry (IUPAC Technical Report). Pure Appl Chem. 2006;78:1455–76.

    Article  CAS  Google Scholar 

  20. Blanco I, Abate L, Bottino FA, Bottino P, Chiacchio MA. Thermal degradation of differently substituted cyclopentyl polyhedral oligomeric silsesquioxane (CP-POSS) nanoparticles. J Therm Anal Calorim. 2012;107:1083–91.

    Article  CAS  Google Scholar 

  21. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  22. MacCallum JR. Thermal Methods—Thermo gravimetric analysis. In: Allen SG, Bevington JC, editors. Comprehensive polymer science, vol. 1. Oxford: Pergamon Press; 1989. p. 903–909.

    Google Scholar 

  23. Hill DJT, Dong L, O’Donnell JH, George G, Pomeri P. Thermal degradation of polymethacrylonitrile. Polym Degrad Stab. 1993;40:143–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Blanco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, I. Lifetime prediction of food and beverage packaging wastes. J Therm Anal Calorim 125, 809–816 (2016). https://doi.org/10.1007/s10973-015-5169-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5169-9

Keywords

Navigation