Skip to main content
Log in

The conformational stability of ovalbumin and lysozyme in the aqueous solutions of various cosolvents

A calorimetric study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A thermodynamic method is reported to monitor the conformational stability of lysozyme and ovalbumin in the presence of various cosolvents. Heats of dilution of the proteins in concentrated aqueous solutions of urea, ethanol or glucose have been determined at 298.15 K by flow microcalorimetry. The pairwise enthalpic interaction coefficients of the proteins in the different solvent media are derived: They allow to gain information about the influence of the cosolvents on the interactions between two interacting hydrated molecules of a protein, hence on its conformational stability. The two proteins behave very differently in the various cosolvents. In glucose, the coefficients for ovalbumin are positive up to 3 mol kg−1 of cosolvent and then negative, while those for lysozyme are negative up to 6 mol kg−1. In urea, coefficients for ovalbumin are positive, while negative for lysozyme up to 7 mol kg1. In ethanol, coefficients for ovalbumin are almost invariant, even at the highest concentrations of cosolvent, underlining that the hydration shell of the protein is such to maintain essentially unaltered the native conformation. For lysozyme, coefficients are negative and almost invariant up to 20 mol kg−1 ethanol: Then, a jump occurs toward much more large and negative values. The observed behaviors are rationalized also on the basis of the results previously obtained for small model molecules in concentrated solutions of urea, ethanol or glucose. The differences between the two proteins are explained in terms of the effects of the cosolvents on hydrophilic and hydrophobic interactions and account for the structural characteristics of each protein. In fact, notwithstanding both are globular proteins, they are differently packed and that could make them to react differently toward the action of a given cosolvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cinelli S, De Francesco A, Onori G, Paciaroni A. Thermal stability and internal dynamics of lysozyme as affected by hydration. Phys Chem Chem Phys. 2004;6:3591–5.

    Article  CAS  Google Scholar 

  2. Roh JH, Curtis JE, Azzam S, Novikov VN, Peral I, Chowdhuri Z, Gregory RB, Sokolov AP. Influence of hydration on the dynamics of lysozyme. Biophys J. 2006;91:2573–88.

    Article  CAS  Google Scholar 

  3. Street TO, Bolen DW, Rose GD. A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci USA. 2006;104:13997–4002.

    Article  Google Scholar 

  4. England JL, Hilan G. Role of solvation effect in protein denaturation: from thermodynamics to single molecules and back. Annu Rev Phys Chem. 2011;62:257–77.

    Article  CAS  Google Scholar 

  5. Lindgren M, Sparrman T, Westlund PO. A combined molecular dynamic simulation and urea 14N NMR relaxation study of the urea-lysozyme system. Spectrochim Acta Part A. 2010;75:953–9.

    Article  Google Scholar 

  6. Panuszko A, Bruzdziak P, Zielkiewicz J, Wyrzykowski D, Stangret J. Effects of urea and trimethylamine-N-oxide on the properties of water and the secondary structure of hen egg white lysozyme. J Phys Chem. 2009;113:14797–809.

    Article  CAS  Google Scholar 

  7. Lehmann MS, Mason SA, McIntyre GJ. Study of ethanol–lysozyme interactions using neutron diffraction. Biochemistry. 1985;24:5862–9.

    Article  CAS  Google Scholar 

  8. Kaushik JK, Bhat R. Thermal stability of proteins in aqueous polyol solutions: role of the surface tension of water in the stabilizing effect of polyols. J Phys Chem B. 1998;102:7058–66.

    Article  CAS  Google Scholar 

  9. Back JF, Oakenfull D, Smith MB. Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry. 1979;18:5191–6.

    Article  CAS  Google Scholar 

  10. Uedaira H, Uedaira H. The effect of sugars on the thermal denaturation of lysozyme. Bull Chem Soc Jpn. 1980;53:2451–5.

    Article  CAS  Google Scholar 

  11. Fujita Y, Noda Y. Differential scanning calorimetric studies on the thermal denaturation of ribonuclease A in aqueous 2-methyl-2,4-pentanediol. Bull Chem Soc Jpn. 1984;57:1891–6.

    Article  CAS  Google Scholar 

  12. Fujita Y, Noda Y. The effect of ethylene glycol on the thermal denaturation of ribonuclease A and chymotrypsinogen A as measured by differential scanning calorimetry. Bull Chem Soc Jpn. 1984;57:2177–83.

    Article  CAS  Google Scholar 

  13. Karuppiah N, Sharma A. Cyclodextrins as protein folding aids. Biochem Biophys Res Commun. 1995;211:60–6.

    Article  CAS  Google Scholar 

  14. Sharma L, Sharma A. Influence of cyclodextrin ring substituents on folding-related aggregation of bovine carbonic anhydrase. Eur J Biochem. 2001;268:2456–63.

    Article  CAS  Google Scholar 

  15. Castronuovo G, Niccoli M. A calorimetric study of the interactions in the aqueous solutions of lysozyme in the presence of denaturing cosolvents. Thermochim Acta. 2012;543:254–9.

    Article  CAS  Google Scholar 

  16. Franks F. Protein stability: the value of ‘old literature’. Biophys Chem. 2002;96:117–27.

    Article  CAS  Google Scholar 

  17. Banipal TS, Singh G. Thermodynamic study of solvation of some amino acids, diglycine and lysozyme in aqueous and mixed aqueous solutions. Thermochim Acta. 2004;412:63–83.

    Article  CAS  Google Scholar 

  18. Bolen DW, Rose GD. Structure and energetic of the hydrogen-bonded backbone in protein folding. Annu Rev Biochem. 2008;77:339–62.

    Article  CAS  Google Scholar 

  19. Castronuovo G, d’Isanto G, Elia V, Velleca F. Role of cosolvent in hydrophobic interactions. Calorimetris studies of alkanols in concentrated aqueous solutions of urea at 298 K. J Chem Soc Faraday Trans. 1996;92:3087–91.

    Article  CAS  Google Scholar 

  20. Castronuovo G, Elia V, Moniello V, Velleca F, Perez-Casas S. Effect of a cosolvent on the hydrophobic interactions. A calorimetric study of alkane-m, n-diols in concentrated aqueous solutions of ethanol. Phys Chem Chem Phys. 1999;1:1887–92.

    Article  CAS  Google Scholar 

  21. Castronuovo G, Elia V, Niccoli M, Velleca F. Calorimetric studies of hydrophobic interactions of alkanols in concentrated aqueous solutions of glucose. Implications for the mechanism of protein stabilization by sugars. Thermochim Acta. 2002;389:1–9.

    Article  CAS  Google Scholar 

  22. Castronuovo G, Elia V, Postiglione C, Velleca F. Interactions of aminoacids in concentrated aqueous solutions of urea or ethanol. Implications for the mechanism of protein denaturation. Thermochim Acta. 1999;339:11–9.

    Article  CAS  Google Scholar 

  23. Mc Millan WG Jr, Mayer JE. The statistical thermodynamics of multicomponent systems. J Chem Phys. 1945;13:276–305.

    Article  CAS  Google Scholar 

  24. Kozak JJ, Knight WS, Kauzmann W. Solute–solute interactions in aqueous solutions. J Chem Phys. 1968;48:675–90.

    Article  CAS  Google Scholar 

  25. Friedman HL, Krishnan CV. Studies of hydrophobic bonding in aqueous alcohols. Enthalpy measurements and model calculations. J Solut Chem. 1973;2:119–40.

    Article  CAS  Google Scholar 

  26. Franks F, Pedley MD, Reid DS. Solute interactions in dilute aqueous solutions. Part 1. Microcalorimetric study of the hydrophobic interaction. J Chem Soc Faraday Trans I. 1976;72:359–67.

    Article  CAS  Google Scholar 

  27. Franks F, Pedley MD. Solute interactions in dilute aqueous solutions. Part 5. Microcalorimetric study of polyols and their mixtures with alkanols. J Chem Soc Faraday Trans I. 1983;79:2249–60.

    Article  CAS  Google Scholar 

  28. Shimizu S. Estimation of excess solvation numbers of water and cosolvents from preferential interaction and volumetric experiments. J Chem Phys. 2004;120:4989–90.

    Article  CAS  Google Scholar 

  29. Shimizu S, Matubayasi N. Preferential hydration of proteins: a Kirkwood–Buff approach. Chem Phys Lett. 2006;420:518–22.

    Article  CAS  Google Scholar 

  30. Timasheff SN. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc Natl Acad Sci USA. 2002;99:9721–6.

    Article  CAS  Google Scholar 

  31. Chipman DM, Sharon N. Mechanism of lysozyme action. Science. 1969;165:454–65.

    Article  CAS  Google Scholar 

  32. Timasheff SN, Xie G. Preferential interaction of urea with lysozyme and their linkage to protein denaturation. Biophys Chem. 2003;105:421–48.

    Article  CAS  Google Scholar 

  33. Andini S, Castronuovo G, Elia V, Pignone A, Velleca F. Chiral recognition in aqueous solutions: on the role of urea in hydrophobic interactions of unsubstituted α-amino acids. J Solut Chem. 1996;25:837–48.

    Article  CAS  Google Scholar 

  34. Castronuovo G, Elia V, Velleca F. Hydrophilic interactions determine cooperativity of hydrophobic interactions and molecular recognition in aqueous solutions of non electrolytes. The preferential configuration model. Curr Top Solut Chem. 1997;2:125–42.

    CAS  Google Scholar 

  35. Korolev VP, Antonova OA, Smirnova NL. Thermal properties and interpartical interactions of l-proline, glycine, and l-alanine in aqueous urea solutions at 288–318 K. J Therm Anal Calorim. 2012;108:1–7.

    Article  CAS  Google Scholar 

  36. Okamoto B, Wood RH, Thompson PT. Freezing points of aqueous alcohols. Free energy of interaction of the CHOH, CH2, CONH and C=C functional groups in dilute aqueous solutions. J Chem Soc Faraday Trans I. 1978;74:1990–2007.

    Article  CAS  Google Scholar 

  37. Auton M, Holthauzen LM, Bolen DW. Anatomy of energetic changes accompanying urea-induced protein denaturation. Proc Natl Acad Sci USA. 2007;103:15317–22.

    Article  Google Scholar 

  38. McKenzie HA, Frier RD. The behavior of R-ovalbumin and its individual components A1, A2, and A3 in urea solution: kinetics and equilibria. J Protein Chem. 2003;22:207–14.

    Article  CAS  Google Scholar 

  39. Kamiyama T, Liu HL, Kimura T. Preferential solvation of lysozyme by dimethylsulfoxide in binary solutions of water and dimethylsulfoxide. J Therm Anal Calorim. 2009;95:353–9.

    Article  CAS  Google Scholar 

  40. Ortore MG, Mariani P, Carsughi F, Cinelli S, Onori G, Teixeira J, Spinozzi F. Preferential solvation of lysozyme in water/ethanol mixtures. J Chem Phys. 2011;135:245103–12.

    Article  Google Scholar 

  41. Sirotkin VA, Khadiullina AV. A study of the hydration of ribonuclease A using isothermal calorimetry. Effect of the protein hydrophobicity and polarity. J Therm Anal Calorim. 2014;118:951–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcella Niccoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niccoli, M., Castronuovo, G. The conformational stability of ovalbumin and lysozyme in the aqueous solutions of various cosolvents. J Therm Anal Calorim 123, 2149–2156 (2016). https://doi.org/10.1007/s10973-015-4921-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4921-5

Keywords

Navigation