Skip to main content
Log in

Effect of organic functional groups on the phase transition of organic liquids in silica mesopores

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The phase transition behaviors of organic liquids condensed in the silica mesopores which modified with organic functional groups have been investigated. Three organic liquids, n-hexane, 1-hexanol and acetonitrile, were employed. The melting points of the organic liquids in the pores with and without the organic functional groups decreased with decreasing the pore size. The effect of the organic functional groups on the change in the physical properties of the organic condensed liquids in the pores was estimated from a depression of the melting point. The phase transition behaviors of the organic liquids in the pores closely related to the interaction between the organic molecules and the pore surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3

Similar content being viewed by others

References

  1. Rouquerol F, Rouquerol J, Sing K. Adsorption by powders and porous solids: principles, methodology and applications. London: Academic Press; 1999. pp. 191–217.

  2. Brun M, Lallemand A, Quinson JF, Eyraud C. A new method for the simultaneous determination of the size and the shape of pores: the thermoporometry. Thermochim Acta. 1977;21:59–88.

    Article  CAS  Google Scholar 

  3. Ishikiriyama K, Todoki M. Pore size distribution measurements of silica gels by means of differential scanning calorimetry. II. Thermoporometry. J Colloid Interface Sci. 1995;171:103–11.

    Article  CAS  Google Scholar 

  4. Riikonen J, Salonen J, Lehto V-P. Utilising thermoporometry to obtain new insights into nanostructured materials. Review part 1. J Therm Anal Calorim. 2011;105:811–21.

    Article  CAS  Google Scholar 

  5. Riikonen J, Salonen J, Lehto V-P. Utilising thermoporometry to obtain new insights into nanostructured materials. Review part 2. J Therm Anal Calorim. 2011;105:823–30.

    Article  CAS  Google Scholar 

  6. Zeman L, Tkacik G, Parlouer P. Characterization of porous sublayers in UF membranes by thermoporometry. J Membrane Sci. 1987;32:329–37.

    Article  CAS  Google Scholar 

  7. Quinson JF, Mameri N, Guihard L, Bariou B. The study of the swelling of an ultrafiltration membrane under the influence of solvents by the thermoporometry and measurement of permeability. J Membrane Sci. 1991;58:191–200.

    Article  CAS  Google Scholar 

  8. Beurroies I, Denoyel R, Llewllyn P, Rouquerol J. A comparison between melting-solidification and capillary condensation hysteresis in mesoporous materials: application to the interpretation of thermoporometry data. Thermochim Acta. 2004;421:11–8.

    Article  CAS  Google Scholar 

  9. Endo A, Yamamoto T, Inagaki Y, Iwakabe K, Ohmori T. Characterization of nonfreezable pore water in mesoporous silica by thermoporometry. J Phys Chem C. 2008;112:9034–9.

    Article  CAS  Google Scholar 

  10. Cides da Silva LC, Araújo GLB, Segismundo NR, Moscardini EF, Mercuri LP, Cosentino IC, Fantini MC, Matos JR. DSC estimation of structural and textural parameters of SBA-15 silica using water probe. J Therm Anal Calorim. 2009;97:701–4.

    Article  CAS  Google Scholar 

  11. Bahloul N, Baba M, Nedelec J-M. Universal behavior of liner alkanes in a confined medium: toward a calibrationless use of thermoporometry. J Phys Chem B. 2005;109:16227–9.

    Article  CAS  Google Scholar 

  12. Illeková E, Krištiak J, Macová E, Maťko I, Šauša O. Rearrangement of hexadecane molecules confined in the nanopores of a controlled pore glass using positron annihilation and differential scanning calorimetry. J Therm Anal Calorim. 2013;113:1187–96.

    Article  Google Scholar 

  13. Landry MR. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim Acta. 2005;433:27–50.

    Article  CAS  Google Scholar 

  14. Nedelec J-M, Grolier J-E, Baba M. Thermoporosimetry: a powerful tool to study the cross-linking in gels networks. J Sol Gel Sci Technol. 2006;40:191–200.

    Article  CAS  Google Scholar 

  15. Wulff M. Pore size determination by thermoporometry using acetonitrile. Thermochim Acta. 2004;419:291–4.

    Article  CAS  Google Scholar 

  16. Kittaka S, Kuranishi M, Ishimaru S, Umahara O. Low temperature properties of acetonitrile confined in MCM-41. J Phys Chem B. 2005;109:23162–9.

    Article  CAS  Google Scholar 

  17. Takei T, Onoda Y, Fuji M, Watanabe T, Chikazawa M. Anomalous phase transition behavior of carbon tetrachloride in silica pores. Thermochim Acta. 2000;352–353:199–204.

    Article  Google Scholar 

  18. Meziane A, Grolier J-PE, Baba M, Nedelec J-M. Crystallization of carbon tetrachloride in confined geometries. Faraday Discuss. 2007;136:383–94.

    Article  CAS  Google Scholar 

  19. Husár B, Commereuc S, Lukáč I, Chmela S, Nedelec J-M, Baba M. Carbon tetrachloride as a thermoporometry liquid probe to study the cross-linking of stylene copolymer networks. J Phys Chem B. 2006;110:5315–20.

    Article  Google Scholar 

  20. Levitz P, Ehret G, Shinha SK, Drake JM. Porous vycor glass: the microstructures as probed by electron microscopy, direct energy transfer, small-angle scattering, and molecular adsorption. J Chem Phys. 1991;95:6151–61.

    Article  CAS  Google Scholar 

  21. Iler RK. The chemistry of silica. New York: Wiley; 1979. pp. 479–488.

  22. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992;114:10834–43.

    Article  CAS  Google Scholar 

  23. Grulke EA. Solubility parameter values. In: Brandrup J, Immergut EH, Grulke EA, editors. Polymer handbook. Hoboken: Wiley; 1999. p. 675–714.

    Google Scholar 

  24. Barrow MJ. α-Acetnitrile at 215 K. Acta Cryst. 1981;B37:2239–42.

    Article  CAS  Google Scholar 

  25. Antson OK, Tilli KJ, Andersen NH. Neutron powder diffraction study of deuterated β-acetonitrile. Acta Cryst. 1987;B43:296–301.

    Article  CAS  Google Scholar 

  26. Takei T, Konishi T, Fuji M, Watanabe T, Chikazawa M. Phase transition of capillary condensed liquids in porous silica: effect of surface hydroxyl groups. Thermochim Acta. 1995;267:159–67.

    Article  CAS  Google Scholar 

  27. Takei T, Yamazaki A, Watanabe T, Chikazawa M. Water adsorption properties on porous silica glass surface modified by trimethylsilyl groups. J Colloid Interface Sci. 1997;188:409–14.

    Article  CAS  Google Scholar 

  28. Tsutsumi K, Takahashi H. Studies of surface modification of solids. Colloid Polym Sci. 1985;263:506–11.

    Article  CAS  Google Scholar 

  29. Fuji M, Ueno S, Takei T, Watanabe T, Chikazawa M. Surface structural analysis of fine silica powder modified with butyl alcohol. Colloid Polym Sci. 2000;278:30–6.

    Article  CAS  Google Scholar 

  30. Haukka S, Root A. The reaction of hexamethyldisilazane and subsequent oxidation of trimethylsilyl groups on silica studied by solid-state NMR and FTIR. J Phys Chem. 1994;98:1695–703.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Takei.

Additional information

The present article is based on the lecture presented at JCCTA50 conference in Osaka—Japan on 28–30 September, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takei, T., Nakada, M., Yoshikawa, N. et al. Effect of organic functional groups on the phase transition of organic liquids in silica mesopores. J Therm Anal Calorim 123, 1787–1794 (2016). https://doi.org/10.1007/s10973-015-4907-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4907-3

Keywords

Navigation