Skip to main content
Log in

Investigation on the thermal expansion of α-CL-20 with different water contents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal expansions of three kinds of α-CL-20 crystals have been investigated in the temperature range from 30 to 130 °C by means of various-temperature X-ray powder diffraction (XRD) together with Rietveld refinement. The crystals were characterized by SEM, XRD, FTIR, and DSC/TG. The results show that the three samples contain 1/2, 1/4 mol, and none structural water, respectively. The α-CL-20 crystals all perform linear and anisotropic thermal expansion, while some differences exist. The unit-cell axes increase linearly with increasing temperature except for the a-axis. The expansion along the a-axis switches from positive to negative thermal expansion at 90 °C for α-CL-20·1/2H2O. The a-axis exhibits positive thermal expansion (PTE) with thermal irresilience for α-CL-20·1/4H2O while PTE with thermal resilience for the anhydrous α-CL-20. The differences are caused by the structural water. The removal of structural water leads to the collapse of a-axis, further results in structural changes of the unit cell. Different water contents can cause different degree of structural changes, leading to the difference of thermal expansion behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gialanella S, Marino F. Effect of microstructure on thermal expansion behaviour of nanocrystalline metallic materials. J Mater Sci Technol. 2010;45(3):824–30.

    CAS  Google Scholar 

  2. El-Mallawany R, Abdel-Kader A, El-Hawary M, El-Khoshkhany N. Volume and thermal studies for tellurite glasses. J Mater Sci Technol. 2010;45(4):871–87.

    CAS  Google Scholar 

  3. Radhakrishnan A, Prabhakar Rao P, Mahesh S, Vaisakhan Thampi D, Koshy P. Role of bond strength on the lattice thermal expansion and oxide ion conductivity in quaternary pyrochlore solid solutions. Inorg Chem. 2012;51(4):2409–19.

    Article  CAS  Google Scholar 

  4. Kovalevsky AV, Yaremchenko AA, Populoh S, Weidenkaff A, Frade JR. Effect of a-site cation deficiency on the thermoelectric performance of donor-substituted strontium titanate. J Phys Chem C. 2014;118(9):4596–606.

    Article  CAS  Google Scholar 

  5. Sikora M, Bernatowicz P, Szafrański M, Katrusiak A. Quasistatic disorder of NH···N bonds and elastic-properties relationship in 2-phenylimidazole crystals. J Phys Chem C. 2014;118(13):7049–56.

    Article  CAS  Google Scholar 

  6. Miller W, Smith C, Mackenzie D, Evans K. Negative thermal expansion: a review. J Mater Sci Technol. 2009;44(20):5441–51.

    CAS  Google Scholar 

  7. Lim T-C. Negative thermal expansion structures constructed from positive thermal expansion trusses. J Mater Sci Technol. 2012;47(1):368–73.

    CAS  Google Scholar 

  8. Nicolaï B, Rietveld IB, Barrio M, Mahé N, Tamarit JL, Céolin R, Guéchot C, Teulon JM. Uniaxial negative thermal expansion in crystals of tienoxolol. Struct Chem. 2013;24(1):279–83.

    Article  Google Scholar 

  9. Michael BJ, Catherine AW, Mary AW. Negative thermal expansion materials. J Therm Anal Calorim. 2010;99(1):165–72.

    Article  Google Scholar 

  10. Bhattacharya S, Saha BK. Steric guided anomalous thermal expansion in a dimorphic organic system. Cryst Eng Comm. 2014;16(12):2340–3.

    Article  CAS  Google Scholar 

  11. Kroll P, Andrade M, Yan X, Ionescu E, Miehe G, Riedel R. Isotropic negative thermal expansion in β-Si (NCN)2 and its origin. J Phys Chem C. 2011;116(1):526–31.

    Article  Google Scholar 

  12. Weese RK, Burnham AK. Coefficient of thermal expansion of the beta and delta polymorphs of HMX. Propellants Explos Pyrotech. 2005;30(5):344–50.

    Article  CAS  Google Scholar 

  13. Leiber CO. Assessment of safety and risk with a microscopic model of detonation. Amsterdam: Elsevier; 2003. p. 524.

    Google Scholar 

  14. Skidmore C, Butler T, Sandoval C. The elusive coefficients of thermal expansion in PBX 9502. NM (US): Los Alamos National Lab; 2003.

    Book  Google Scholar 

  15. Kolb JR, Rizzo H. Growth of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) I. anisotropic thermal expansion. Propellants Explos Pyrotech. 1979;4(1):10–6.

    Article  CAS  Google Scholar 

  16. Herrmann M, Engel W, Eisenreich N. Thermal expansion, transitions, sensitivities and burning rates of HMX. Propellants Explos Pyrotech. 1992;17(4):190–5.

    Article  CAS  Google Scholar 

  17. Novikov VV, Avdashchenko DV, Matovnikov AV, Mitroshenkov NV, Bud SL. Heat capacity and thermal expansion of icosahedral lutetium boride LuB66. J Therm Anal Calorim. 2014;116(1):765–9.

    Article  CAS  Google Scholar 

  18. Novikov VV, Mitroshenkov NV, Matovnikov AV, Avdashchenko DV, Trubnickov SV, Morozov AV. Peculiarities of the lattice thermal properties of rare-earth tetraborides. J Therm Anal Calorim. 2015;102(2):1597–602.

    Article  Google Scholar 

  19. Litasov KD, Gavryushkin PN, Yunoshev AS, Rashchenko SV, Inerbaev TM, Akilbekov AT. Thermal expansion of coronene C24H12 at 185-416 K. J Therm Anal Calorim. 2015;119(11):1183–9.

    Article  CAS  Google Scholar 

  20. Sahu M, Krishnan K, Saxena MK, Dash S. Combustion synthesis and thermal expansion of RE6UO12 (RE = Dy and Tb). J Therm Anal Calorim. 2013;112(1):165–72.

    Article  CAS  Google Scholar 

  21. Samui P, Gupta K, Dash S, Dahale ND, Naik Y. Thermoluminescence and linear thermal expansion of MgAl2O4. J Therm Anal Calorim. 2014;115(10):1289–94.

    Article  CAS  Google Scholar 

  22. Ivanov MG, Shmakov AN, Drebushchak VA, Podyacheva OY. Two mechanisms of thermal expansion in perovskite SrCo0.6Fe0.2Nb0.2O3−z. J Therm Anal Calorim. 2010;110(6):79–82.

    Article  Google Scholar 

  23. Sun J, Shu X, Liu Y, Zhang H, Liu X, Jiang Y, Kang B, Xue C, Song G. Investigation on the thermal expansion and theoretical density of 1, 3, 5-trinitro-1, 3, 5-triazacyclohexane. Propellants Explos Pyrotech. 2011;36(4):341–6.

    Article  Google Scholar 

  24. Xue C, Sun J, Kang B, Liu Y, Liu X. The b-d-phase transition and thermal expansion of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. Propellants Explos Pyrotech. 2009;35:333–8.

    Article  Google Scholar 

  25. Shu X, Tian Y, Song G, Zhang H, Kang B, Zhang C, Liu Y, Liu X, Sun J. Thermal expansion and theoretical density of 2,2′,4,4′,6,6′-hexanitrostilbene. J Mater Sci Technol. 2011;46(8):2536–40.

    CAS  Google Scholar 

  26. Sun J, Kang B, Xue C, Liu Y, Xia Y, Liu X, Zhang W. Crystal state of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) undergoing thermal cycling process. Cent Eur J Energ Mater. 2010;28(3):189–201.

    Article  CAS  Google Scholar 

  27. Sun J, Kang B, Zhang H, Liu Y, Xia Y, Yao Y, Liu X. Investigation on irreversible expansion of 1,3,5-triamino-2,4,6-trinitrobenzene cylinder. Cent Eur J Energ Mater. 2011;8(1):69–79.

    CAS  Google Scholar 

  28. Evers J, Klapötke TM, Mayer P, Oehlinger G, Welch J. α-and β-FOX-7, polymorphs of a high energy density material, studied by X-ray single crystal and powder investigations in the temperature range from 200 to 423 K. Inorg Chem. 2006;45(13):4996–5007.

    Article  CAS  Google Scholar 

  29. Kempa P, Herrmann M. Temperature resolved X-ray diffraction for the investigation of the phase transitions of FOX-7, Part. Part Syst Charact. 2005;22(6):418–22.

    Article  Google Scholar 

  30. Gump JC, Stoltz CA, Mason BP, Freedman BG, Ball JR, Peiris SM. Equations of state of 2,6-diamino-3,5-dinitropyrazine-1-oxide. J Appl Phys. 2011;110(7):073523.

    Article  Google Scholar 

  31. Geetha MNU, Sarwade D, et al. Studies on CL-20:the most powerful high energy material. J Therm Anal Calorim. 2003;73(3):913–22.

    Article  CAS  Google Scholar 

  32. Agrawal JP. Recent trends in high-energy materials. Prog Energy Combust Sci. 1998;24(1):1–30.

    Article  CAS  Google Scholar 

  33. Simpson R, Urtiew P, Ornellas D, Moody G, Scribner K, Hoffman D. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants Explos Pyrotech. 1997;22(5):249–55.

    Article  CAS  Google Scholar 

  34. Foltz MF, Coon CL, Garcia F, Nichols AL. The thermal stability of the polymorphs of hexanitrohexaazaisowurtzitane, Part I. Propellants Explos Pyrotech. 1994;19(1):19–25.

    Article  CAS  Google Scholar 

  35. Xu J, Sun J, Zhou K. Review on polymorphic transformation of CL-20 in recrystallization. Chin J Energ Mater. 2012;20(2):248–55.

    CAS  Google Scholar 

  36. Xu J, Tian Y, Liu Y, Zhang H, Shu Y, Sun J. Polymorphism in hexanitrohexaazaisowurtzitane crystallized from Solution. J Cryst Growth. 2012;354:13–9.

    Article  CAS  Google Scholar 

  37. Xu J, Pu L, Liu Y. Polymorphic transformation of ε-CL-20 in different HTPB-based composite systems. Chin J Energ Mater. 2015;23(2):113–9.

    CAS  Google Scholar 

  38. Qi LY, Zeman S, Svoboda R, Elbeih A. The effect of crystal structure on the thermal reactivity of CL-20 and its C4-bonded explosives. J Therm Anal Calorim. 2013;112(9):837–49.

    Google Scholar 

  39. Zhang P, Xu JJ, Guo XY, Jiao QJ, Zhang JY. Effect of addictives on polymorphic transition of ε-CL-20 in castable systems. J Therm Anal Calorim. 2014;110(6):79–82.

    Google Scholar 

  40. Sorescu DC, Rice BM, Thompson DL. Molecular packing and NPT-molecular dynamics investigation of the transferability of the RDX intermolecular potential to 2, 4, 6, 8, 10, 12-hexanitrohexaazaisowurtzitane. J Phys Chem B. 1998;102(6):948–52.

    Article  CAS  Google Scholar 

  41. Nadezhda B, Bolotina M. J H R L. Energetic materials:variable-temperature crystal structures of γ- and ε-HNIW polymorphs. J Appl Crystallogr. 2004;37:808–14.

    Article  Google Scholar 

  42. Gump JC, Peiris SM. Phase transitions and isothermal equations of state of epsilon hexanitrohexaazaisowurtzitane (CL-20). J Appl Phys. 2008;104(8):083509.

    Article  Google Scholar 

  43. Diffracplus Topas (version 3.0) User’s manual. Axs Bruker Inc: Madsion, WI; 2005.

  44. Engel W, Fraunhofer. Inst.f. chemische Technologie ICT. Pfinaztal, Germany, ICDD. Grant-in-Aid; 2005.

  45. Foltz MF, Coon CL, Garcia F, Nichols AL. The thermal stability of the polymorphs of hexanitrohexaazaisowurtzitane, Part II. Propellants Explos Pyrotech. 1994;19(3):133–44.

    Article  CAS  Google Scholar 

  46. Li J, Brill TB. Kinetics of solid polymorphic phase transitions of CL-20. Propellants Explos Pyrotech. 2007;32(4):326–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Youth Talent Training Foundation of Institute of Chemical Materials (QNRC-201205), the National Natural Science Foundation of China (11472252, 11372290), and the Foundation of China Academy of Engineering Physics (2012A0201007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2832 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, L., Xu, J., Song, G. et al. Investigation on the thermal expansion of α-CL-20 with different water contents. J Therm Anal Calorim 122, 1355–1364 (2015). https://doi.org/10.1007/s10973-015-4884-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4884-6

Keywords

Navigation