Skip to main content

Advertisement

Log in

Thermal and economic analysis of low-cost modified flat-plate solar water heater with parallel two-side serpentine flow

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study deals with the thermal performance evaluation and economic analysis of a low-cost modified flat-plate solar water heater (SWH) with a parallel two-side serpentine flow. This is a unique inexpensive and easily fabricated SWH having better thermal efficiency than those investigated by earlier authors. The solar water heating system is having parallel two-side serpentine arrangement with 68 pieces of copper elbows inclined at an angle of 90º for the water flow inside the collector. A PV panel of the suitable wattage has been applied to supply power to the controller circuit and pump which makes this system self-sufficient. This experimental setup is developed at the roof of the building keeping the fact in the mind to be used for both residential and commercial buildings as per the needs. The peak thermal efficiency of the system is 81.26 and 80.20 % individually for the months of June and July under typical climatic condition of Malaysia, while the average thermal efficiencies for the months of June and July have been found to be 70.24 and 70.96 % relatively, which is compared with those of other eight designs presented to the study. Furthermore, a comprehensive fiscal analysis for the long run using MATLAB has been presented to the study. It is found that this solar water heater is more economical than that of an electric water heater in the long run.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A/P:

Capital recovery factor

A/F:

Sinking fund factor

A.W:

Annual worth

A :

Annual (RM)

C :

Change

c :

Thermal capacity (J kg−1 °C)

E :

Radiation intensity (W m−2)

I :

Initial (RM)

i :

Interest rate (%)

n 1 :

Day of year

N :

Lifetime

P :

Amount of money (RM)

PV:

Photovoltaic

q opt :

Optical losses (W m−2)

q t :

Thermal losses (W m−2)

Q 1 :

Latitude (degree)

Q :

Heat flux (W m−2)

SWH:

Solar water heater

EWH:

Electric water heater

GWH:

Gas water heater

LNG:

Liquefied natural gas

LPG:

Liquefied petroleum gas

T :

Temperature (°C)

α :

Absorption factor

β :

Collector slope (degree)

Δ:

Gradient

δ :

Inclination angle (degree)

τ :

Transmission factor

η :

Efficiency

rc:

Running cost (RM)

c :

Cost (RM)

lc:

Installation cost (RM)

a :

Ambient temperature (°C)

p :

Mean plate temperature (°C)

afic:

Aluminum foil insulation cover

i :

Input

e :

Output

max:

Maximum

th:

Thermal

u :

Usable

References

  1. Rahman MA, Lee KT. Energy for sustainable development in Malaysia: energy policy and alternative energy. Energy Policy. 2006;34(15):2388–97.

    Article  Google Scholar 

  2. Leo-Moggie A. Keynote address: Bakun Hydroelectric project seminar, Kuala Lumpur. 1996;1:30.

  3. EW. Malaysia GDP Per Capita (PPP), US Dollars Statistics, http://www.economywatch.com/economicstatistics/Malaysia/GDP_Per_Capita_PPP_US_Dollars/. International Monetary Fund (IMF). 2013.

  4. TST. Malaysia revises GDP growth for 2015 to 4.5–5.5%, http://www.straitstimes.com/news/asia/south-east-asia/story/malaysia-says-weak-global-oil-prices-will-lead-deficit-more-5b-budge. News. 2015.

  5. Oh TH, Pang SY, Chua SC. Energy policy and alternative energy in Malaysia: issues and challenges for sustainable growth. Renew Sustain Energy Rev. 2010;14(4):1241–52.

    Article  Google Scholar 

  6. Harikrishnan S, Deepak K, Kalaiselvam S. Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. J Therm Anal Calorim. 2014;115(2):1563–71.

    Article  CAS  Google Scholar 

  7. BED. B. 1.1 Buildings sector energy consumption, http://buildingsdatabook.eren.doe.gov/docs/xls_pdf/1.1.1.pdf. Book. 2012.

  8. Hu Z, Li A, Gao R, Yin H. Effect of the length ratio on thermal energy storage in wedge-shaped enclosures. J Therm Analys Calorim. 2014;117(2):807–16.

  9. Brown R. Chapter 5, “Stabilizing climate: shifting to renewable energy, (New York: W.W. Norton & Company). http://grist.org/article/on-rooftops-worldwide-a-solar-water-heating-revolution/. Plan B 40: mobilizing to save civilization. 2009.

  10. Mohsen MS, Al-Ghandoor A, Al-Hinti I. Thermal analysis of compact solar water heater under local climatic conditions. Int Commun Heat Mass Transf. 2009;36(9):962–8.

    Article  Google Scholar 

  11. Sarhaddi F, Farahat S, Ajam H, Behzadmehr A, Adeli MM. An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Appl Energy. 2010;87(7):2328–39.

    Article  Google Scholar 

  12. Chamoli S, Thakur NS. Exergetic performance evaluation of solar air heater having V-down perforated baffles on the absorber plate. J Therm Analys Calorim. 2014;117(2):909–23.

  13. Farahat S, Sarhaddi F, Ajam H. Exergetic optimization of flat plate solar collectors. Renew Energy. 2009;34:1169–74.

    Article  Google Scholar 

  14. Adnan I, Othman MY, Ruslan MH, Alghoul MA, Yahya M, Zaharim A, et al. Performance of photovoltaic thermal collector (PVT) with different absorbers design. ISSN: 1790-5079. Wseas Trans Environ Dev. 2009;5(3):321–30.

    Google Scholar 

  15. Chong KK, Chay KG, Chin KH. Study of a solar water heater using stationary V-trough collector. Renew Energy. 2012;39(1):207–15.

    Article  Google Scholar 

  16. Cruz-Peragon F, Palomar JM, Casanova PJ, Dorado MP, Manzano-Agugliaro F. Characterization of solar flat plate collectors. Renew Sustain Energy Rev. 2012;16(3):1709–20. doi:10.1016/j.rser.2011.11.025.

    Article  CAS  Google Scholar 

  17. Pandey AK, Tyagi VV, Rahim NA, Kaushik SC, Tyagi SK. Thermal performance evaluation of direct flow solar water heating system using exergetic approach. J Therm Anal Calorim. 2015. doi:10.1007/s10973-015-4566-4.

  18. Sunil V, Sharma N. Experimental investigation of the performance of an indirect-mode natural convection solar dryer for drying fenugreek leaves. J Therm Anal Calorim. 2014;118:523–31.

    Article  CAS  Google Scholar 

  19. Zondag HA. Flat-plate PV-thermal collectors and systems: a review. Renew Sustain Energy Rev. 2008;12(4):891–959.

    Article  Google Scholar 

  20. Arab M, Abbas A. Model-based design and analysis of heat pipe working fluid for optimal performance in a concentric evacuated tube solar water heater. Sol Energy. 2013;94:162–76. doi:10.1016/j.solener.2013.03.029.

    Article  Google Scholar 

  21. Lin WM, Chang KC, Chung KM. Payback period for residential solar water heaters in Taiwan. Renew Sustain Energy Rev. 2015;41:901–6. doi:10.1016/j.rser.2014.09.005.

    Article  Google Scholar 

  22. Tang R, Yang Y. Nocturnal reverse flow in water-in-glass evacuated tube solar water heaters. Energy Convers Manag. 2014;80:173–7. doi:10.1016/j.enconman.2014.01.025.

    Article  Google Scholar 

  23. Zondag HA. Vries DWd, Helden WGJv, Zolingen RJCv. The yield of different combined PV-thermal collector designs. Sol Energy. 2003;74(3):253–69.

    Article  Google Scholar 

  24. Abdel-Khalik SI. Heat removal factor for a flat-plate solar collector with a serpentine tube. Sol Energy. 1976;18(1):59–64.

    Article  Google Scholar 

  25. Zhang HF, Lavan Z. Thermal performance of a serpentine absorber plate. Sol Energy. 1985;34:175–7.

    Article  Google Scholar 

  26. RETScreen I. Clean energy project analysis software, www.retscreen.net. 2005.

  27. SunEarthTools C. Tools for consumers and designers of solar. Software. http://www.sunearthtools.com/dp/tools/pos_sun.php. 2012.

  28. Tyagi VV, Pandey AK, Kothari R, Tyagi SK. Thermodynamics and performance evaluation of encapsulated PCM-based energy storage systems for heating application in building. J Therm Analys Calorim. 2014;115(1):915–24.

    Article  CAS  Google Scholar 

  29. Struckmann F. Analysis of a flat-plate solar collector, http://www.lth.se/fileadmin/ht/Kurser/MVK160/Project_08/Fabio.pdf Project report, heat and mass transport, Lund, Sweden. 2008.

  30. REUK cu. Solar water heating pump controller. http://www.reuk.co.uk/Solar-Water-Heating-Pump-Controller.htm. Accessed 12 Nov 2011. 2012.

  31. Jaunzems D, Rochas C. Development of solar combisystem control algorithm and simulation model. Sci J RTU. 2006;4:133–44.

    Google Scholar 

  32. Jercan AŞ. The simplified calculus of the flat plate solar collector Annals of the University of Craiova. Electrl Eng Ser. 2006;30:302–6.

    Google Scholar 

  33. Hottel HC, Whillier A. Evaluation of flat-plate solar collector performance. Trans Conf Use Solar Energy. 1958;2:74.

    Google Scholar 

  34. Whillier A. Prediction of performance of solar collectors. In: Jordan RC and Liu BYH, editors. Applications of solar energy for heating and cooling of buildings, 170, Chap. 8. NY: ASHRAE GRP; 1977.

  35. Tyagi VV, Pandey AK, Kaushik SC, Tyagi SK. Thermal performance evaluation of a solar air heater with and without thermal energy storage: an experimental study. J Therm Anal Calorim. 2012;107:1345–52.

    Article  CAS  Google Scholar 

  36. Ong KS. Solar water heaters engineering and applications. ISBN 967-9940-57-8 1994.

  37. Klein SA. The effects of thermal capacitance upon flat-plate solar collectors. MS Thesis, Dept of Chemical Engineering, University of Wisconsin. 1973.

  38. Asaad A-Z, Saffa R. Environmental and economic impact of a new type of solar louvre thermal collector. Intl J Low-Carbon Technol. 2006;1:217–27.

    Article  Google Scholar 

  39. Florides GA, Kalogirou SA, Tassou SA, Wrobel LC. Modeling of the modern houses of cyprus and energy consumption analysis. Energy. 2000;25:915–37.

    Article  Google Scholar 

  40. Kalogirou S. Economic analysis of solar energy systems using spreadsheets. Renew Energy. 1996;9:1303–7.

    Article  Google Scholar 

  41. Al-Talib AAM,Hamdan MM, Sopian K, Wahab MA. An economical analysis for a stratified integrated solar water heater with a triangular shape. J Adv Sci Arts. 2009;1(1):17–28.

  42. Ali B, Sopian K, Ghoul MA, Othman MY, Zaharim A, Mahir Razali A. Economics of domestic solar hot water heating systems in Malaysia. Eur J Sci Res. 2009;26(1):20–8.

    Google Scholar 

  43. Entrepreneure. Calculating electricity charges and usage in Malaysia. http://eblog-entrepreneur.blogspot.com/2010/02/calculating-electricity-charges-and.html. 2012.

  44. Alibaba C. Alpha electric CO SDN BHD. http://www.alibaba.com/product/wschoo-123200549-10675033/Water_Heater_VIZZ_98.html. 2012.

Download references

Acknowledgements

The authors are thankful to the UM Power Energy Dedicated Advanced Centre (UMPEDAC) and Institute of Graduate Studies (IPS), University of Malaya, Malaysia, for funding this research work through the research grant (UM.C/HIR/MOHE/ENG/32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.S., Pandey, A.K., Tunio, M.A. et al. Thermal and economic analysis of low-cost modified flat-plate solar water heater with parallel two-side serpentine flow. J Therm Anal Calorim 123, 793–806 (2016). https://doi.org/10.1007/s10973-015-4883-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4883-7

Keywords

Navigation