Skip to main content
Log in

Correlative study of the thermoelectric power, electrical resistivity and different precipitates of Al–1.12Mg2Si–0.35Si (mass%) alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Characterization of the different precipitates developed in supersaturated Al–1.12Mg2Si–0.35Si (mass%) alloy by thermoelectric power (TEP) and electrical resistivity (ER) measurements was considered. The effect of precipitation of coherent, semi-coherent and non-coherent phases on the TEP was found impressive in describing different precipitates. Upon growing and coherency loss of β′ particles, the TEP increases to reach a maximum value. TEP begins to approach a stable value by the formation of the equilibrium β (Mg2Si) precipitates and then stabilizes with the complete growth of more stable precipitates β phase and Si particles. The first-order coefficient α of the ER–temperature dependence was found dominating in the temperature range 300–635 K. Above this temperature range, the second-order coefficient β starts sharing effectively the resistivity–temperature dependence. Furthermore, it has been shown that the range of temperature in which the first-order coefficient α is dominating slightly increases after slow cooling twice to the room temperature in two successive runs. Correlation of α and β with the lattice rigidity of the alloy under investigation was established. Quenching and slow cooling affect strongly the observed correlation. All measurements in the present investigation were taken under non-isothermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Cayron C, Bufat A. Transmission electron microscopy study of the β′ phase (Al–Mg–Si alloys) and QC phase (Al–Cu–Mg–Si alloys): ordering mechanism and crystallographic structure. Acta Mater. 2000;48:2639–53.

    Article  CAS  Google Scholar 

  2. Pogatscher S, Antrekowitsch H, Leitner H, Poschmann D, Zhang ZL, Uggowitzer PJ. Influence of interrupted quenching on artificial aging of Al–Mg–Si alloys. Acta Mater. 2012;60:4496–505.

    Article  CAS  Google Scholar 

  3. Massardier V, Epicier T, Merle P. Correlation between the microstructural evolution of a 6061 aluminum alloy and the evolution of its thermoelectric power. Acta Mater. 2000;48:2911–24.

    Article  CAS  Google Scholar 

  4. Birol Y. DSC analysis of the precipitation reactions in the alloy AA6082 effect of sample preparation. J Therm Anal Calorim. 2006;83:219–22.

    Article  CAS  Google Scholar 

  5. Esmaeili S, Lloyd DJ. Characterization of the evolution of the volume fraction of precipitates in aged AlMgSiCu alloys using DSC technique. Mater Charact. 2005;55:307–19.

    Article  CAS  Google Scholar 

  6. Vedani M, Angella G, Bassani P, Ripamoni D, Tuissi A. DSC analysis of strengthening precipitates in ultrafine Al–Mg–Si Alloys. J Therm Anal Calorim. 2007;87:277–84.

    Article  CAS  Google Scholar 

  7. Abo Zeid EF, Gaber A. Mechanical properties and precipitation behavior as a function of heat treatment of Al–4.4Cu–1.5 Mg–0.6Mn–0.25Si (WT%) alloy. Int J Metal Mater Sci Eng. 2012;2:1–20.

    Google Scholar 

  8. Miao WF, Laughlin DE. Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022. Metal Mater Trans. 2000;31A:361–71.

    Article  CAS  Google Scholar 

  9. Matsuda K, Taniguchi S, Kido K, Uetani Y, Ikeno S. Effects of Cu and transition metals on the precipitation behaviors of metastable phases at 523 K in Al–Mg–Si Alloys. Mater Trans. 2002;43:2789–95.

    Article  CAS  Google Scholar 

  10. Andersen SJ, Marioara CD, Froseth A, Vissers R, Zandbergen HW. Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al–Mg–Si alloy system and its relation to the β′ and β″ phases. Mater Sci Eng. 2005;A390:127–38.

    Article  CAS  Google Scholar 

  11. Hamana D, Baziz L, Bouchear M. Kinetics and mechanism of formation and transformation of metastable β′-phase in Al–Mg alloys. Mater Chem Phys. 2004;84:112–9.

    Article  CAS  Google Scholar 

  12. Pogatscher S, Antrekowitsch H, Leitner H, Ebner T, Uggowitzer PJ. Mechanisms controlling the artificial aging of Al–Mg–Si alloys. Acta Mater. 2011;59:3352–63.

    Article  CAS  Google Scholar 

  13. Tsao C-S, Jeng U-S, Chen C-Y, Kuo T-Y. Small-angle X-ray scattering study of nanostructure evolution of β″ precipitates in Al–Mg–Si alloy. Scr Mater. 2005;53:1241–5.

    Article  CAS  Google Scholar 

  14. Gaber A, Gaffar MA, Mostafa MS, Abo Zeid EF. Investigation of the developed precipitates in Al-1.1%Mg2Si balanced alloy by DSC and SEM techniques. J Mater Sci Tech. 2006;22:1483–8.

    Article  CAS  Google Scholar 

  15. Gaber A, Gaffar MA, Mostafa MS, Abo Zeid EF. Precipitation kinetics of Al–1.12 Mg2Si–0.35 Si and Al–1.07 Mg2Si–0.33 Cu alloys. J Alloys Compd. 2007;429:167–75.

    Article  CAS  Google Scholar 

  16. Marioara CD, Andersen SJ, Jansen J, Zandbergen HW. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al–Mg–Si alloy. Acta Mater. 2003;51:789–96.

    Article  CAS  Google Scholar 

  17. Birol Y. DSC analysis of the precipitation reaction in AA6005 alloy. J Therm Anal Calorim. 2008;93:977–81.

    Article  CAS  Google Scholar 

  18. Wang S, Matsuda K, Kawabata T, Yamazaki T, Ikeno S. Variation of age-hardening behavior of TM-addition Al–Mg–Si alloys. J Alloy Compd. 2011;509:9876–83.

    Article  CAS  Google Scholar 

  19. Massardier V, Merle P. Mechanisms of interaction controlling the kinetics of zone formation in metal matrix composites: comparison of the effect of the reinforcement in Al–Cu and Al–Mg–Si matrix composites. Mater Sci Eng. 1998;A249:109–20.

    Article  CAS  Google Scholar 

  20. Massardier V, Pelletier L, Merle P. Influence of the introduction of ceramic particles in Al–Cu alloys on GP zone formation. Mater Sci Eng. 1998;A249:121–33.

    Article  CAS  Google Scholar 

  21. Eskin DG, Massardier V, Merle P. A study of high-temperature precipitation in Al–Mg–Si alloys with an excess of silicon. J Mater Sci. 1999;34:811–20.

    Article  CAS  Google Scholar 

  22. Esmaeili S, Lloyd DJ, Poole WJ. Effect of natural aging on the resistivity evolution during artificial aging of the aluminum alloy AA6111. Mater Lett. 2005;59:575–7.

    Article  CAS  Google Scholar 

  23. Abo Zeid EF, Gaber A, Gaffer MA, Galal L. Study of the developed nano- scale precipitates in AF/C 489 alloys by using DSC and SEM techniques. Int J Appl Eng Res Dev. 2013;3:7–14.

    Google Scholar 

  24. Raeisinia B, Poole WJ, Lloyd DJ. Examination of precipitation in the aluminum alloy AA6111 using electrical resistivity measurements. Mater Sci Eng. 2006;A420:245–9.

    Article  CAS  Google Scholar 

  25. Abo Zeid EF, Gaber A. Investigation of nanoscale precipitates developed in Al–0·73 Mg–0·45Si–0·34Cu–0·21Cr–0·20Fe alloy. J Mater Sci Technol. 2011;27:487–93.

    Article  CAS  Google Scholar 

  26. Kato M, Nishino Y, Mizutani U, Watanabe Y, Asano S. Temperature dependence of electrical resistivity in (Fe1-xTix)3 Al alloys. J Phys: Condens Matter. 2000;12:9153–62.

    CAS  Google Scholar 

  27. Abo Zeid EF, Kim Y-T. Investigation of developed precipitates in AlMgSiCu alloys with and without excess Si. J Mater Sci Technol. 2010;26:440–4.

    Article  CAS  Google Scholar 

  28. Silva RAG, Adorno AT, Magdalena AG, Carvalho TM, Stipcich M, Cuniberti A, Castro ML. Thermal behavior of the Cu-22.55at. %Al alloy with small Ag additions. J Therm Anal Calorim. 2011;103:459–63.

    Article  CAS  Google Scholar 

  29. Rao V, Mitra A. Phase transformation studies on Mn–Al–C Alloy, by dsc and electrical resistivity measurements. J Therm Anal Calorim. 1995;44:375–84.

    Article  CAS  Google Scholar 

  30. Gaffar MA, Gaber A, Mostafa MS, Abo Zeid EF. The effect of Cu addition on the thermo-electric power and electrical resistivity in Al–Mg–Si balanced alloy, correlation study. J Mater Sci Eng A. 2007;465:274–82.

    Article  CAS  Google Scholar 

  31. Epifanov GI. Solid state physics. Moscow: Mir publisher; 1979. p. 184.

    Google Scholar 

  32. Li XC, Zhen XL, Xiao GZ, Jian GT, Ke L, Xing XL, Chen Q. Precipitation of metastable phases and its effect on electrical resistivity of Al–0.96Mg2Si alloy during aging. Trans Nonferrous Met Soc China. 2014;24:2266–74.

    Article  CAS  Google Scholar 

  33. Seyed Reihani SM, Dafir D, Merle P. Experimental analysis of the acceleration of β′ precipitation in a 6061/SiCp composite. Scr Metal Mater. 1993;28:639–44.

    Article  Google Scholar 

  34. Lide DR. Editor. CRC “Handbook of chemistry and physics”. 80th Ed. (1999–2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Abo Zeid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abo Zeid, E.F., Gaffar, M.A., Gaber, A. et al. Correlative study of the thermoelectric power, electrical resistivity and different precipitates of Al–1.12Mg2Si–0.35Si (mass%) alloy. J Therm Anal Calorim 122, 1269–1277 (2015). https://doi.org/10.1007/s10973-015-4861-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4861-0

Keywords

Navigation