Skip to main content
Log in

How are thermodynamically stable G-quadruplex–duplex hybrids?

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the last decade, DNA duplex and G-quadruplex motifs have been investigated for their potential applications in nanotechnology. Recently, G-quadruplex–duplex hybrids, generated from the juxtaposition of these two structural elements, have been considered as DNA nanostructures for nanotechnological applications to take advantage of both duplex and G-quadruplex peculiarities. The junction between the two structural motifs can play an important role both for the structure and stability of these hybrids. Here, we analyze the thermodynamics of a number of G-quadruplex–duplex hybrids differing in the bases composition in proximity of the junction. Differential scanning calorimetry, circular dichroism, and gel electrophoresis methodologies were employed to highlight differences in their stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Feldkamp U, Niemeyer CM. Rational design of DNA nanoarchitectures. Angew Chem Int Ed Engl. 2006;45(12):1856–76.

    Article  CAS  Google Scholar 

  2. Simmel FC, Dittmer WU. DNA nanodevices. Small. 2005;1(3):284–99.

    Article  CAS  Google Scholar 

  3. Lin C, Liu Y, Rinker S, Yan H. DNA tile based self-assembly: building complex nanoarchitectures. ChemPhysChem. 2006;7(8):1641–7.

    Article  CAS  Google Scholar 

  4. Yatsunyk LA, Mendoza O, Mergny JL. “Nano-oddities”: unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices. Acc Chem Res. 2014;47(6):1836–44.

    Article  CAS  Google Scholar 

  5. Alberti P, Bourdoncle A, Saccà B, Lacroix L, Mergny JL. DNA nanomachines and nanostructures involving quadruplexes. Org Biomol Chem. 2006;4(18):3383–91.

    Article  CAS  Google Scholar 

  6. Fotticchia I, Giancola C, Petraccone L. G-quadruplex unfolding in higher-order DNA structures. Chem Commun (Camb). 2013;49(82):9488–90.

    Article  CAS  Google Scholar 

  7. Dutta K, Fujimoto T, Inoue M, Miyoshi D, Sugimoto N. Development of new functional nanostructures consisting of both DNA duplex and quadruplex. Chem Commun (Camb). 2010;46(41):7772–4.

    Article  CAS  Google Scholar 

  8. Lim KW, Phan AT. Structural basis of DNA quadruplex–duplex junction formation. Angew Chem Int Ed Engl. 2013;52(33):8566–9.

    Article  CAS  Google Scholar 

  9. Lim KW, Khong ZJ, Phan AT. Thermal stability of DNA quadruplex–duplex hybrids. Biochemistry. 2014;53(1):247–57.

    Article  CAS  Google Scholar 

  10. Pagano B, Randazzo A, Fotticchia I, Novellino E, Petraccone L, Giancola C. Differential scanning calorimetry to investigate G-quadruplexes structural stability. Methods. 2013;64(1):43–51.

    Article  CAS  Google Scholar 

  11. Giancola C. A convenient tool for studying the stability of proteins and nucleic acids: differential scanning calorimetry. J Therm Anal Calorim. 2008;91(1):79–85.

    Article  CAS  Google Scholar 

  12. Giancola C. Thermodynamics of G-quadruplexes. In: Spindler L, Fritzsche W, editors. Guanine quartets: structure and application. Cambridge: Royal Society of Chemistry; 2013. p. 63–72.

    Google Scholar 

  13. Cantor CR, Warshaw MM, Shapiro H. Oligonucleotide interactions. Circular dichroism studies of the conformation of deoxyoligonucleotides. Biopolymers. 1970;9(9):1059–77.

    Article  CAS  Google Scholar 

  14. Marky LA, Breslauer KJ. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers. 1987;26(9):1601–20.

    Article  CAS  Google Scholar 

  15. Olsen CM, Lee HT, Marky LA. Unfolding thermodynamics of intramolecular G-quadruplexes: base sequence contributions of the loops. J Phys Chem B. 2009;113(9):2587–95.

    Article  CAS  Google Scholar 

  16. Petraccone L, Pagano B, Esposito V, Randazzo A, Piccialli G, Barone G, Mattia CA, Giancola C. Thermodynamics and kinetics of PNA-DNA quadruplex-forming chimeras. J Am Chem Soc. 2005;127(46):16215–23.

    Article  CAS  Google Scholar 

  17. Petraccone L, Trent JO, Chaires JB. The tail of the telomere. J Am Chem Soc. 2008;130(49):16530–2.

    Article  CAS  Google Scholar 

  18. Petraccone L, Spink C, Trent JO, Garbett NC, Mekmaysy CS, Giancola C, Chaires JB. Structure and stability of higher-order human telomeric quadruplexes. J Am Chem Soc. 2011;133(51):20951–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Anh Tuan Phan and Kah Wai Lim (Nanyang Technological University, Singapore) for generously providing the investigated oligonucleotide sequences. Financial support from “Future in Research” (FIR) 2013 Grant is gratefully acknowledged (Project code RBFR13XFXR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concetta Giancola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotticchia, I., Amato, J., Pagano, B. et al. How are thermodynamically stable G-quadruplex–duplex hybrids?. J Therm Anal Calorim 121, 1121–1127 (2015). https://doi.org/10.1007/s10973-015-4588-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4588-y

Keywords

Navigation