Skip to main content
Log in

The effect of urea and urea-modified halloysite on performance of PCL

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effects of urea and urea-modified halloysite nanotubes (HNT) on structure and properties of poly(ɛ-caprolactone) (PCL) were evaluated using mechanical testing combined with FTIR, DSC, DMA, and various microscopic techniques. The results indicate important changes in mechanical behavior by urea-mediated interchain hydrogen bonding in PCL, whereas no linking between PCL and HNT in the related nanocomposite was found. As a result, the improved mechanical behavior of nanocomposites with urea-modified HNT was caused by combination of the matrix modification and urea-aided enhanced dispersion of HNT. The additives do not have any marked effect on PCL crystallinity. HNT increases and urea reduces the overall rate of crystallization. Both additives show a moderate nucleating effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Woodruff MA, Hutmacher DW. The return of a forgotten polymer: polycaprolactone in the 21st century. Prog Polym Sci. 2010;35:1217–56.

    Article  CAS  Google Scholar 

  2. Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38:3484–504.

    Article  CAS  Google Scholar 

  3. Wu D, Zhang Y, Yuan L, Zhang M, Zhou W. Viscoelastic interfacial properties of compatibilized poly (ε-caprolactone)/polylactide blend. J Polym Sci B Polym Phys. 2010;48:756–65.

    Article  CAS  Google Scholar 

  4. Maglio G, Migliozzi A, Palumbo R, Immirzi B, Volpe MG. Compatibilized poly(ε-caprolactone)/poly(l-lactide) blends for biomedical uses. Macromol Rapid Commun. 1999;20:236–8.

    Article  CAS  Google Scholar 

  5. Choi N-S, Kim C-H, Cho KY, Park J-K. Morphology and hydrolysis of PCL/PLLA blends compatibilized with P(LLA-co-CL) or P(LLA-b-CL). J Appl Polym Sci. 1992;86:1892–8.

    Article  Google Scholar 

  6. Rao RU, Suman KNS, Rao VK, Bhanukiran K. Study of rheological and mechanical properties of biodegradable polylactide and polycaprolactone blends. Int J Eng Sci Technol. 2011;3:6259–65.

    Article  Google Scholar 

  7. Chen Q-H, Li X-F, Lin J-H. Preparation and properties of biodegradable bamboo powder/polycaprolactone composites. J For Res. 2009;20:271–4.

    Article  CAS  Google Scholar 

  8. Neppalli R, Marega C, Marigo A, Bajgai MP, Kim HY, Causin V. Improvement of tensile properties and tuning of the biodegradation behavior of polycaprolactone by addition of electrospun fibers. Polymer. 2011;52:4054–60.

    Article  CAS  Google Scholar 

  9. Fukushima K, Tabuani D, Camino G. Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater Sci Eng C. 2009;29:1433–41.

    Article  CAS  Google Scholar 

  10. Chen B, Evans JRG. Poly(ε-caprolactone)-clay nanocomposites: structure and mechanical properties. Macromolecules. 2006;39:747–54.

    Article  CAS  Google Scholar 

  11. Ludueña LN, Vázquez A, Alvarez VA. Effect of the type of clay organo-modifier on the morphology, thermal/mechanical/impact/barrier properties and biodegradation in soil of polycaprolactone/clay nanocomposites. J Appl Poly Sci. 2013;128:2648–57.

    Article  Google Scholar 

  12. Istrate OM, Chen B. Porous exfoliated poly(ε-caprolactone)/clay anocomposites: preparation, structure, and properties. J Appl Polym Sci. 2012;125:102–12.

    Article  Google Scholar 

  13. Di Maio E, Iannace S, Sorentia L, Nicolais L. Isothermal crystallization in PCL/clay nanocomposites investigated with thermal and rheometric methods. Polymer. 2004;45:8893–900.

    Article  Google Scholar 

  14. Alateyah AI, Dhakal HN, Zhang ZY. Processing, properties, and applications of polymer nanocomposites based on layer silicates: a review. Adv Polym Technol. 2013. doi:10.1002/adv.21368.

    Google Scholar 

  15. Du M, Guo B, Jia D. Newly emerging applications of halloysite nanotubes: a review. Polym Int. 2010;59:574–82.

    CAS  Google Scholar 

  16. Handge UA, Hedicke-Höchstötter K, Altstädt V. Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: influence of molecular weight on thermal, mechanical and rheological properties. Polymer. 2010;51:2690–9.

    Article  CAS  Google Scholar 

  17. Lee K-S, Chang Y-W. Thermal, mechanical, and rheological properties of poly(ε-caprolactone)/halloysite nanotube nanocomposites. J Appl Polym Sci. 2013;128:2807–16.

    Article  CAS  Google Scholar 

  18. Khunova V, Kristof J, Kelnar I, Dybal J. The effect of halloysite modification combined with in situ matrix modifications on the structure and properties of polypropylene/halloysite nanocomposites. Express Polym Lett. 2013;7:471–9.

    Article  CAS  Google Scholar 

  19. Guo Q, Groeninckx G. Crystallization kinetics of poly(ε-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly(ε-caprolactone). Polymer. 2001;42:8647–55.

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision C.01. Wallingford, CT: Gaussian Inc.; 2010.

    Google Scholar 

  21. Merrick JP, Moran D, Radom L. An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A. 2007;111:11683–700.

    Article  CAS  Google Scholar 

  22. Horváth E, Kristóf J, Kurdi R, Makó É, Khunová V. Study of urea intercalation into halloysite by thermoanalytical and spectroscopic techniques. J Therm Anal Calorim. 2011;105:53–9.

    Article  Google Scholar 

  23. Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull. 1991;25:265–71.

    Article  CAS  Google Scholar 

  24. Wang J, Cheung MK, Mi Y. Miscibility and morphology in crystalline/amorphous blends of poly(caprolactone)/poly(4-vinylphenol) as studied by DSC, FTIR, and solid state NMR. Polymer. 2002;43:1357–64.

    Article  CAS  Google Scholar 

  25. Cai N, Dai Q, Wang Z, Luo X, Xue Y, Yu F. Toughening of electrospun poly(l-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes. J Mater Sci. 2014;. doi:10.1007/s10853-014-8703-4.

    Google Scholar 

  26. Liu M, Guo B, Du M, Jia D. Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film. Appl Phys A Mater. 2007;88:391–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (Grant No 13-15255S) and Slovak Scientific Grant Agency (VEGA) Grant No. 1/0361/14. The support of the TÁMOP-4.1.1.C-12/1/KONV-2012-0017 project in the nanocomplex preparation is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viera Khunová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khunová, V., Kelnar, I., Kristóf, J. et al. The effect of urea and urea-modified halloysite on performance of PCL. J Therm Anal Calorim 120, 1283–1291 (2015). https://doi.org/10.1007/s10973-015-4448-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4448-9

Keywords

Navigation