Skip to main content
Log in

DTA study of the crystallization of Li2O–Nb2O5–SiO2–TiO2 glass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the crystallization of 30Li2O·15Nb2O5·50SiO2·5TiO2 (mol%) glass was examined. The parent glass was prepared by the standard melt quenching method, and the investigations were performed under non-isothermal and isothermal conditions using the DTA, XRD, SEM and EDS methods. The results revealed primary crystallization of this glass and the dendritic morphology of crystal growth. Three crystalline phases were formed in the glass matrix during crystallization, whereby LiNbO3 was formed as the primary phase, followed by Li2Si2O5 and SiO2 as the secondary. The surface and volume mechanisms of crystallization occur. The condition that both the mechanisms were dominant was determined. In the case of volume crystallization, the characteristics of the nucleation process were examined. The kinetic parameters of crystallization under different mechanisms of crystallization were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abouelleil MM, Leonberger FJ. Waveguides in lithium niobate. J Am Ceram Soc. 1989;72:1311–21.

    Article  CAS  Google Scholar 

  2. Peterson GE, Ballman AA, Lenzo PV, Bridenbauch MP. Electro-optic properties of LiNbO3. Appl Phys Lett. 1964;5:62–4.

    Article  CAS  Google Scholar 

  3. Xue D, Kitamura K. Crystallographic modifications of physical properties of lithium niobate crystals by the cation location. J Cryst Growth. 2003;249:507–13.

    Article  CAS  Google Scholar 

  4. Dravecz G, Shackmann B, Cochez M, Ferriol M. Investigation of new fluxes for the single-crystal growth of stoichiometric lithium niobate. J Therm Anal Calorim. 2007;90:343–5.

    Article  CAS  Google Scholar 

  5. Khalameida S, Sydorchuk V, Leboda R, Skubiszewska-Zieba J, Zazhigalov V. Preparation of nano-dispersed lithium niobate by mechanochemical route. J Therm Anal Calorim. 2014;115:579–86.

    Article  CAS  Google Scholar 

  6. Todorovic M, Radonjic LJ. Lithium-niobate ferroelectric material obtained by glass crystallization. Ceram Int. 1997;23:55–60.

    Article  CAS  Google Scholar 

  7. Kim HG, Komatsu T, Sato R, Matusita K. Crystallization of LiNbO3 in tellurite glasses. J Non-Cryst Solids. 1993;162:201–4.

    Article  CAS  Google Scholar 

  8. Syam Prasad N, Varma KBR. Evolution of ferroelectric LiNbO3 phase in a reactive glass matrix (LiBO2–Nb2O5). J Non-Cryst Solids. 2005;351:1455–65.

    Article  CAS  Google Scholar 

  9. Graca MPF, da Ferreira Silva MG, Valente MA. Structural and electrical characteristics of LiNbO3 embedded in a 34% SiO2 glass matrix. J Eur Ceram Soc. 2008;28:1197–203.

    Article  CAS  Google Scholar 

  10. Sigaev VN, Golubev NV, Usmanova IZ, Stefanovich SYu, Pernice P, Fanelli E, Arone A, Champagnon B, Califano V, Vouagner D, Konstantinova TE, Glazunova VA. On the nature of the second-order optical nonlinearity of nanoinhomogeneous glasses in the Li2O–Nb2O5–SiO2 system. Glass Phys Chem. 2007;40:97–105.

    Article  Google Scholar 

  11. Prapitpongwanicha P, Pengpata K, Rüssel C. Phase separation and crystallization in LiNbO3/SiO2 glasses. Mater Chem Phys. 2009;113:913–8.

    Article  Google Scholar 

  12. Vigouroux H, Fargin E, Fargues A, Le Garrec B, Dussauze M, Rodriguez V, Adamietz F, Mountrichas G, Kamitsos E, Lotrev S, Sigaev V. Crystallization and second harmonic generation of lithium niobium silicate glass ceramics. J Am Ceram Soc. 2011;94:2080–6.

    Article  CAS  Google Scholar 

  13. Mazurin OV, Strelcina MV, Shaiko-Shaikovskaja TP. Properties of glasses and glass-forming melts, vol. 5. Lenjingrad: Nauka; 1981.

    Google Scholar 

  14. Höland W, Beall GH. Glass-ceramic technology. 2nd ed. Ohio: The American Ceramic Society; 2012.

    Book  Google Scholar 

  15. Rodrigues-Carvajal J User’s guide to program FULLPROF, 2004-LLB-JRC (Laboratorie León Brillouin, CEA-CNRS, Centre d’Etudes de Saclay, Gif sur Yvette, France) 1995.

  16. Hruby A. Evaluation of glass forming tendency by means of DTA. Czechoslov J Phys B. 1972;22:1187–93.

    Article  CAS  Google Scholar 

  17. Zotov N, Boysen H, Frey F, Metzger T, Born E. Cation substitution models of congruent LiNbO3, investigated by X-ray and neutron powder diffraction. J Phys Chem Solids. 1994;5:145–52.

    Article  Google Scholar 

  18. De Jong BHWS, Slaats PGG, Super HTJ, Veldman N, Spek AL. Extended structures in crystalline phyllosilicates: silica ring systems in lithium, rubidium, cesium, and cesium/lithium phyllosilicate. J Non-Cryst Solids. 1994;176:164–71.

    Article  Google Scholar 

  19. Petzoldt J, Pannhorst W. Chemistry and structure of glass-ceramic materials for high precision optical application. J Non-Cryst Solids. 1991;129:191–8.

    Article  CAS  Google Scholar 

  20. Ray CS, Yang Q, Haung W, Day DE. Surface and internal crystallization in glasses as determined by differential thermal analysis. J Am Ceram Soc. 1996;79:3155–60.

    Article  CAS  Google Scholar 

  21. Ray CS, Day DE, Haung W, Lakshmi Narayan K, Cull TC, Kelton KF. Non-isothermal calorimetric studies of the crystallization of lithium disilicate glass. J Non-Cryst Solids. 1996;204:1–12.

    Article  CAS  Google Scholar 

  22. Kelton KF, Lakshmi Narayan K, Levin LE, Cull TC, Ray CS. Computer modeling of non-isothermal crystallization. J Non-Cryst Solids. 1996;204:13–31.

    Article  CAS  Google Scholar 

  23. Marotta A, Buri A, Branda F. Nucleation in glass and differential thermal analysis. J Mater Sci. 1981;16:341–4.

    Article  CAS  Google Scholar 

  24. Ray CS, Day DE. Determining the nucleation rate curve for lithium disilicate glass by differential thermal analysis. J Am Ceram Soc. 1990;73:439–42.

    Article  CAS  Google Scholar 

  25. Weinberg MC. Interpretation of DTA experiments used for crystal nucleation rate determinations. J Am Ceram Soc. 1991;74:1905–9.

    Article  CAS  Google Scholar 

  26. Kelton KF. Estimation of the nucleation rate by differential scanning calorimetry. J Am Ceram Soc. 1992;75:2449–52.

    Article  CAS  Google Scholar 

  27. Fokin VM, Zanotto ED, Yuritsyn NS, Schmelzer WP. Homogeneous crystal nucleation in silicate glasses: a 40 years perspective, review. J Non-Cryst Solids. 2006;352:2681–714.

    Article  CAS  Google Scholar 

  28. Tošić MB, Živanović VD, Grujić SR, Stojanović JD, Nikolić JD. A study of the primary crystallization of a mixed anion silicate glass. J Non-Cryst Solids. 2008;354:3694–704.

    Article  Google Scholar 

  29. Fokin VM, Cabral AA, Reis MCV, Nascimento MLF, Zanotto ED. Critical assessment of DTA-DSC methods for the study of nucleation. J Non-Cryst Solids. 2010;356:358–67.

    Article  CAS  Google Scholar 

  30. Tošić MB, Grujić SR, Živanović VD, Nikolić JD, Matijašević SD. The nucleation of K2O·TiO2·3GeO2 glass under non-isothermal conditions. J Non-Cryst Solids. 2010;356:1385–91.

    Article  Google Scholar 

  31. Ozawa T. A modified method for kinetic analysis of thermoanalytical data. J Therm Anal. 1976;9:369–73.

    Article  CAS  Google Scholar 

  32. Yinnon H, Uhlmann DR. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquidus, part I: theory. J Non-Cryst Solids. 1983;54:253–75.

    Article  CAS  Google Scholar 

  33. Živanović VD, Grujić SR, Tošić MB, Blagojević NS, Nikolić JD. Non-isothermal crystallization of K2O·TiO2·3GeO2 glass. J Therm Anal Calorim. 2009;96:427–32.

    Article  Google Scholar 

  34. Kelton KF. Analysis of crystallization kinetics. Mat Sci Eng A. 1997;226–228:142–50.

    Article  Google Scholar 

  35. MacFarlane DR, Matecki M, Poulain M. Crystallization in fluoride glasses. J Non-Cryst Solids. 1984;64:351–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support (Projects 34001 and 172004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Živanović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Živanović, V.D., Tošić, M.B., Grujić, S.R. et al. DTA study of the crystallization of Li2O–Nb2O5–SiO2–TiO2 glass. J Therm Anal Calorim 119, 1653–1661 (2015). https://doi.org/10.1007/s10973-015-4390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4390-x

Keywords

Navigation