Skip to main content
Log in

Thermal characterization study of chondroitin sulfate-co-N-isopropylacrylamide as drugs carrier

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Poly(N-isopropylacrylamide) (PNIPAAm) is formed by polymerization of the monomer N-isopropylacrylamide (NIPAAm) and is classified as thermosensitive due to its ability to expand and contract at a certain temperature. Chondroitin sulfate is called bioadhesive as it increases the permanence time of the drug in the body, enhancing its bioavailability. In this study, the copolymer chondroitin sulfate-co-N-isopropylacrylamide (CSM) is proposed as a new drug carrier and thermal analysis is used to choose among the copolymers CSM + NIPAAm 5 % (w/v), CSM + NIPAAm 2.5 % (w/v) and CSM + PNIPAAm 2.5 % (w/v), the one with best thermal properties. Proton nuclear magnetic resonance spectroscopy showed structural similarity between the copolymers. Thermogravimetric analysis/derivative thermogravimetry showed that the copolymer CSM + NIPAAm 5 % (w/v) has higher thermal stability when compared to the others. Differential thermal analysis showed thermal values consistent with the events of decomposition while kinetics of degradation confirmed its thermal stability. So the copolymer CSM + NIPAAm 5 % (w/v) presented the best thermal characteristics for an efficient drug carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Seitz J, Metha S, Yeager JL. Revestimento de Comprimidos. In: Lachman L, Lieberman HA, Kanig J, editors. Teoria e Prática na Indústria Farmacêutica. 2nd ed. Lisboa: Fundação Calouste Gulbenkian; 2001. p. 599–650.

    Google Scholar 

  2. Zheng W, Sauer D, Mcginity JW. Influence of hydroxyethylcellulose on the drug release properties of theophylline pellets coated with Eudragit RS 30 D. Europ J Pharm Biopharm. 2005;59:147.

    Article  CAS  Google Scholar 

  3. Bunhak EJ, Mendes ES, Pereira NC, Cavalcanti O. Influência do sulfato de condroitina na formação de filmes isolados de polimetacrilato: avaliação do índice de intumescimento e permeabilidade ao vapor d’água. Quim Nov. 2007;30:312–3.

    Article  CAS  Google Scholar 

  4. Roseman S. Reflections on glycobiology. J Biol Chem. 2001;276:41527–42.

    Article  CAS  Google Scholar 

  5. Santos CV. Sulfato de condroitina: da matéria-prima à terapêutica. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2009.

    Google Scholar 

  6. Villanova JCO, Oréfice RL, Cunha AS. Aplicações Farmacêuticas de Polímeros. Polímeros Ciência e Tecnologia. 2010;20:53–5.

    Article  Google Scholar 

  7. Andrews GP, Laverty TP, Jones DS. Biopharmacology. Europ J Pharm. 2009;71:505.

    Article  CAS  Google Scholar 

  8. Lopes AC, Caparros C, Ribelles JLG, Neves IC, Lanceros-Mendez S. Electrical and thermal behavior of c-phase poly(vinylidene fluoride)/NaY zeolite composites. Microporous Mesoporous Mater. 2012;161:98–105.

    Article  CAS  Google Scholar 

  9. Kunita MH. Enxertia de metacrilato de glicidila em filmes poliméricos por processo com fluidos supercríticos. Universidade Estadual de Maringá; 2005.

  10. Glycidyl Methacrylate (GMA). In: A high purity, dual functionality monomer for coatings and resins. 2012. http://www.acrylicmonomers.com of subordinate document. Accessed 15 Feb 2012.

  11. Reis AV, Cavalcanti OA, Rubira AF, Muniz EC. Synthesis and characterization of pH-responsive hydrogels based on chemically modified Arabic gum polysaccharide. Polymer. 2006;47:2023.

    Article  CAS  Google Scholar 

  12. Reis AV, Guilherme MR, Almeida EAMS, Kunita MH, Muniz EC, Rubira AF, Tambourgi EB. Copolymer hydrogel spheres consisting of modified sulfate chondroitin-co-poly(N-isopropylacrylamide). J Appl Polym Sci. 2010;1–9.

  13. Berger J, et al. Structure and interaction in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Europ J Pharm Biopharm. 2004;57:19–34.

    Article  CAS  Google Scholar 

  14. Gao G, Mohwald H, Shen J. Thermosensitive poly (allylamine)-g-poly (N-isopropylacrylamide): synthesis, phase separation and particle formation. Polymer. 2005;46:4088.

    Article  CAS  Google Scholar 

  15. Guilherme MR, Moura MR, Radovanovic E, Geuskens G, Rubira AF, Muniz EC. Novel thermo-responsive membranes composed of interpenetrated polymer networks of alginate-Ca2+ and poly(N-isopropylacrylamide). Polymer. 2005;46:2668–74.

    Article  CAS  Google Scholar 

  16. Eeckman F, Möes AJ, Amighi K. Synthesis and characterization of thermosensitive copolymers for oral controlled drug delivery. Eur Polym J. 2004;40:873.

    Article  CAS  Google Scholar 

  17. Takeda N, Nakamura E, Yokoyama M, Okano T. Temperature-responsive polymeric carriers incorporating hydrophobic monomers for effective transfection in small doses. J Control Release. 2004;95:343.

    Article  CAS  Google Scholar 

  18. Campese GM, Tambourgi EB, Guilherme MR, Moura MR, Muniz EC, Youssef EY. Resistência mecânica de hidrogéis termo-sensíveis constituídos de alginato-ca2+/pnipaam, tipo semi-ipn. Quim Nov. 2007;30:1649–50.

    Article  CAS  Google Scholar 

  19. Rathjen CM, Park C, Goodrich PR, Walgenbach DD. The effect of preparation temperature on some properties of a temperature-sensitive hydrogel. Polym Gel Netw. 1995;3:101–15.

    Article  CAS  Google Scholar 

  20. Alvarez-Lorenzo C, Concheiro A, Dubovik AS, Grinberg NV, Burova TV, Grinberg VY. Temperature-sensitive chitosan-poly(N-isopropylacrylaminde) interpenetrated networks with enhanced loading capacity and controlled properties. J Control Release. 2005;102:629–41.

    Article  CAS  Google Scholar 

  21. Feil H, Bae YH, Feijen J, Kim SW. Mutual influence of pH and temperature on the swelling of ionizable and thermosensitive hydrogels. Macromolecules. 1992;25:5528–30.

    Article  CAS  Google Scholar 

  22. Chavanpatil MDP, Jain S, Chaudhari R, Shear PRV. Novel sustained release, swellable and bioadhesive gastroretentive drug delivery system for ofloxacin. Intern J Pharm. 2006;316:86–92.

    Article  CAS  Google Scholar 

  23. Lyramam Soares-Sobrinho JL, Brasileiro MT, Roca MFL, Barraza JA, Viana OS, Rolim-Neto PJ. Sistemas Matriciais Hidrofílicos e Mucoadesivos para Liberação Controlada de Fármacos. Lat Am J Pharm. 2007;26:5.

    Google Scholar 

  24. Vendruscolo CW, Andreazz IF, Ganter JLMS, Ferrero C, Bresolin MB. Xanthan and galactomannan (from M. scabrella) matrix tablets for oral controlled delivery of theophylline. Int J Pharm. 2005;296:1–11.

    Article  CAS  Google Scholar 

  25. Xia X, Hu Z, Marquez M. Physically bonbed nanoparticle networks, a novel drug delivery system. J Control Release. 2005;103:21–30.

    Article  CAS  Google Scholar 

  26. Langer R, Peppas NA. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 2003;49:2990–3006.

    Article  CAS  Google Scholar 

  27. Griffith LG. Polymeric biomaterials. Acta Mater. 2000;48:263–77.

    Article  CAS  Google Scholar 

  28. Aragão CFS, Souza FS, Barros ACS, Veras JWE, Barbosa Filho JM, Macedo RO. Aplicação da termogravimetria (TG) no controle de qualidade da milona (Cissampelos sympodialis Eichl.) Menispermaceae. Rev Bras Farmacogn. 2002;12:60–1.

    Article  Google Scholar 

  29. Barral L, Dıez FJ, Garcia-Garabal S, Lopez J, Montero B, Montes R, Ramirez C, Rico M. Thermodegradation kinetics of a hybrid inorganic–organic epoxy system. Europ Polym J. 2005;41:1662–6.

    Article  CAS  Google Scholar 

  30. Vermal RK, Sanjay G. Formulation aspects in the development of osmotically controlled oral drug delivery systems. J Pharm Biom Anal. 2005;38:633–44.

    Article  Google Scholar 

  31. Wendhausen PAP, Rodrigues GV, Marchetto O. Análises Térmicas: caracterização de materiais III. Santa Catarina: Universidade Federal de Santa Catarina; 2006.

    Google Scholar 

  32. Reading M, Craig MQD. Thermal analysis of pharmaceuticals. 1rd ed. Kindle Edition; 2007.

  33. Viana OS, Araújo AAS, Simões RA, Soares JL, Matos CRS, Grangeiro-Júnior S, Lima CM, Rolim-Neto PJ. Kinetic analysis of the thermal decomposition of efavirenz and compatibility studies with selected excipients. Lat Am J Pharm. 2008;2:211–6.

    Google Scholar 

  34. Alves TVG, Tavares EJM, Aouada FA, Negrão CAB, Oliveira MEC, Duarte Junior AP, Costa CEF, Silva Junior JOC, Costa RMR. Thermal analysis characterization of PAAm-co-MC hydrogels. J Therm Anal Calorim. 2011;106:717–24.

    Article  CAS  Google Scholar 

  35. Costa RS, Negrão CAB, Camelo SRP, Ribeiro-Costa RM, Barbosa WLR, Costa CEF, Silva Júnior JOC. Investigation of thermal behavior of Heliotropium indicum L. lyophilized extract by TG and DSC. J Therm Anal Calorim. 2013;111:1959–64.

    Article  CAS  Google Scholar 

  36. Costa MNF, Muniz MAP, Negrão CAB, Costa CEF, Lamarão MLN, Morais L, Silva Júnior JOC, Ribeiro-Costa RM. Characterization of Pentaclethra macroloba oil. J Therm Anal Calorim. 2014;115:2269–75.

    Article  Google Scholar 

  37. Pham QT, Chern CS. Thermal stability of organofunctional polysiloxanes. Thermochim Acta. 2013;565:114–23.

    Article  CAS  Google Scholar 

  38. Flynn JH, Wall LA, Ozawa T. Methods. J Resp Nat. 1996;487.

  39. Lee CT, Huang CP, Lee YD. Synthesis and characterizations of amphiphilic poly(l-lactide)-grafted chondroitin sulfate copolymer and its application as drug carrier. Biom Eng. 2007;24:131–9.

    Article  CAS  Google Scholar 

  40. Reis AV, Guilherme MR, Mattos LHC, Rubira AF, Tambourgi EB, Muniz EC. Nanometer- and submeter-sized hollow spheres of chondroitin sulfate as a potential formulation strategy for anti-inflammatory encapsulation. Pharm Res. 2008;1–7.

  41. Robb SA, Lee BH, Mclemore R, Vernon BL. Simultaneously physically and chemically gelling polymer system utilizing a poly(NIPAAm-co-cysteamine) based copolymer. Biomacromolecule. 2007;8:2294–300.

    Article  CAS  Google Scholar 

  42. Garay TM, Liamas CM, Iglesias E. Study of polymer-polymer complexes and blends of poly(N-isopropylacrylamide) with poly(carboxylic acid): 1. poly(acrylic acid) and poly(methacrylic acid). Polymer. 1997;38:5091–6.

    Article  CAS  Google Scholar 

  43. Ying L, Kang ET, Neoh KG. Characterization of membranes prepared from blends of poly(acrylic acid)-graft-poly(vinylidene fluoride) with poly(N-isopropylacrylamide) and their temperature-and pH-sensitive filtration. J Membr Sci. 2003;224:93–106.

    Article  CAS  Google Scholar 

  44. Saeed A, Georget DMR, Mayes AG. Solid-state thermal stability and degradation of a family of poly(N-isopropylacrylamide-co-hydroxymethylacrylamide) copolymers. J Polym Sci Part A Polym Chem. 2010;48:5848–55.

    Article  CAS  Google Scholar 

  45. Silva FB. Síntese e caracterização de hidrogéis de Poli[(n-isopropilacrilamida)-co-(ácido metacrílico)] e sua aplicação como sistemas de liberação controlada de medicamentos. Minas Gerais: Universidade Federal de Minas Gerais; 2006.

    Google Scholar 

  46. Fajardo AR, Piai JF, Rubira AF, Muniz EC. Time- and pH-dependent self-rearrangement of a swollen polymer network based on polyelectrolytes complexes of chitosan/chondroitin sulfate. Carbohydr Polym. 2010;80:934–43.

    Article  CAS  Google Scholar 

  47. Fajardo AR, Antonio LCL, Pereira GBA, Rubira F, Muniz ED. Polyelectrolyte complexes based on pectin–NH2 and chondroitin sulfate. Carbohydr Polym. 2012;87:1950–5.

    Article  CAS  Google Scholar 

  48. Wang LF, Shena SS, Lu SC. Synthesis and characterization of chondroitin sulfate–methacrylate hydrogels. Carbohydr Polym. 2003;52:389–96.

    Article  CAS  Google Scholar 

  49. Iqbal MS, Jamil Y, Kausar T, Akhtar M. Thermal degradation study of glycidyl methacrylate acrylonitrile copolymers. J Therm Anal Calorim. 2009;96:225–33.

    Article  CAS  Google Scholar 

  50. Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR. Thermal analysis of chitosan based networks. Carbohydr Polym. 2005;62:97–103.

    Article  CAS  Google Scholar 

  51. Batista NL, Costa ML, Iha K, Botelho EC. Avaliação da degradação térmica e estimativa da vida útil de compósitos poli(éter imida)/fibra de carbono. 12° Congresso Brasileiro de Polímeros; 2013.

  52. Paoli MA. Degradação e estabilização de polímeros. 2rd ed. Chemkeys; 2008.

Download references

Acknowledgements

The authors thank CNPq, PROPESP/UFPA and FADESP for the financial support, EMBRAPA Amazônia Oriental, Faculty of Chemistry and Laboratory of Quality Control and Toxicology, which are part of the Faculty of Pharmacy, Federal University of Pará for their assistance in the experimental stage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roseane Maria Ribeiro-Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa Sanches, S.C., de Vasconcelos, F., da Costa, C.E.F. et al. Thermal characterization study of chondroitin sulfate-co-N-isopropylacrylamide as drugs carrier. J Therm Anal Calorim 120, 991–999 (2015). https://doi.org/10.1007/s10973-014-4380-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4380-4

Keywords

Navigation