Skip to main content
Log in

Combined facile methods of the DSC and origin lab program to study the dehydration kinetics of KMnPO4·H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal dehydration kinetics of potassium manganese phosphate monohydrate (KMnPO4·H2O) was studied using alternative procedure, including the combination between DSC data and Origin Lab program. The results revealed that this convenient method is a suitable tool for the determination of reliable kinetic parameters. The peak area at current temperature can be calculated using the Origin Lab program. Consequently, the kinetic parameters by non-isothermal equations can be calculated. The apparent activation energies were found to be 101.26 and 101.45 kJ mol−1 using KAS and iterative methods, respectively. The natural logarithms of pre-exponential factor (lnA) were found to be 12.2775 and 12.4157, respectively based on mechanism function of g(α) = (1−(1 – α)2/3). The experimental enthalpy change of the dehydration process of the studied compound was about 290 J g−1. All detectable peaks from XRD patterns of this compound are indexed as the formula KMnPO4·H2O according to the standard data file PDF#802360. The SEM micrograph exhibits the loose agglomeration phenomenon among the thin plate, which supports the existence of the layered structure compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Šoptrajanov B, Stefov V, Kuzmanovski I, Jovanovski G, Lutz HD, Engelen B. Very low H–O–H bending frequencies. IV. Fourier transform infrared spectra of synthetic dittmarite. J Mol Struct. 2002;613:7–14.

    Article  Google Scholar 

  2. Lapina LM. Metal ammonium phosphates: new application areas. Usp Khim. 1968;37:693–701.

    Article  Google Scholar 

  3. Barros N, Airoldi C, Simoni JA, Ramajo B, Espina A, Garcia JR. Calorimetric determination of the effect of ammonium-iron(II) phosphate monohydrate on Rhodic Eutrudox Brazilian Soil. Spectrochim Acta. 2006;441:89–95.

    CAS  Google Scholar 

  4. Erskine AM, Grim G, Horning SC. Ammonium ferrous phosphate. Ind Eng Chem. 1944;36:456–60.

    Article  CAS  Google Scholar 

  5. Koleva V, Zhecheva E, Stoyanova R. Facile synthesis of LiMnPO4 olivines with a plate-like morphology from a dittmarite-type KMnPO4·H2O precursor. Dalton Trans. 2011;40:7385–94.

    Article  CAS  Google Scholar 

  6. He L, Liu X, Zhao Z. Non-isothermal kinetics study on synthesis of LiFePO4 via carbothermal reduction method. Thermochim Acta. 2013;566:298–304.

    Article  CAS  Google Scholar 

  7. Su J, Wei BQ, Rong JP, Yin WY, Ye ZX, Tian XQ, Ren L, Cao MH, Hu CW. A general solution-chemistry route to the synthesis LiMPO4 (M = Mn, Fe and Co) nanocrystals with [010] orientation for lithium ion batteries. J Solid State Chem. 2011;184:2909–19.

    Article  CAS  Google Scholar 

  8. Zhang Y, Huo QY, Du P, Wang LZ, Zhang AQ, Song YH, Lv Y, Li GY. Advances in new cathode material LiFePO4 for lithium-ion batteries. Synth Met. 2012;162:1315–26.

    Article  CAS  Google Scholar 

  9. Xuehang W, Wenwei W, Sen L, Yanjin F, Shushu L. Preparation via solid-state reaction at room temperature and characterization of layered nanocrystalline KMnPOH2O. J Alloys Compd. 2009;479:541–4.

    Article  Google Scholar 

  10. Koleva VG. Metal-water interactions and hydrogen bonding in dittmarite-type compounds M•M″PO4·H2O (M• = K+, NH4 +; M″ = Mn2+, Co2+, Ni2+): correlations of IR spectroscopic and structural data. Spectrochim Acta. 2005;Part A 62:1196-1202

  11. Visser D, Carling SG, Day P, Deportes J. Magnetic structure of KMnPO4·H2O. J Appl Phys. 1991;69:6016–8.

    Article  CAS  Google Scholar 

  12. Ryu SH, Sin JH, Shanmugharaj AM. Study on the effect of hexamethylene diamine functionalized graphene oxide on the curing kinetics of epoxy nanocomposites. Eur Polym J. 2014;52:88–97.

    Article  CAS  Google Scholar 

  13. Zvetkov VL, Djoumaliisky S, Simeonova-Ivanova E. The non-isothermal DSC kinetics of polyethylene tereftalate–epoxy compatible lends. Thermochim Acta. 2013;553:16–22.

    Article  CAS  Google Scholar 

  14. Tanwar N, Saraswat VK. A study of kinetics of phase transformation of Ge10Se75Sb15 chalcogenide glass. J Non-Cryst Solids. 2014;394–395:1–5.

    Article  Google Scholar 

  15. He Y, Liao S, Chen Z, Li Y, Xia Y, Wu W, Li B. Nonisothermal kinetics study with advanced isoconversional procedure and DAEM. J Therm Anal Calorim. 2014;115:237–45.

    Article  CAS  Google Scholar 

  16. Zvetkov VL, Krastev RK, Samichkov VI. Rate equations in the study of the DSC kinetics of epoxy-amine reactions in an excess of epoxy. Thermochim Acta. 2008;478:17–27.

    Article  CAS  Google Scholar 

  17. Ručigaj A, Alič B, Krajnc M, Šebenik U. Investigation of cure kinetics in a system with reactant evaporation: epoxidized soybean oil and maleic anhydride case study. Eur Polym J. 2014;52:105–16.

    Article  Google Scholar 

  18. Xiao L, Li L, Fu F, He M. Studies on non-isothermal and isothermal dehydration kinetics of FePO4·2H2O. Thermochim Acta. 2012;541:57–61.

    Article  CAS  Google Scholar 

  19. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  20. Akahira T, Sunose T. Transactions of the 1969 Joint convention of four electrical institutes; Paper No. 246, 1969; Research Report, Chiba Institute of Technology (Sci. Technol.) 1971; 16:22–23.

  21. Basset H, Bedwell WL. Studies of phosphates. Part I. Ammonium magnesium phosphate and related compounds. J Chem Soc. 1933;137:854–71.

    Article  Google Scholar 

  22. Noisong P, Danvirutai C. Kinetics and mechanism of thermal dehydration of KMnPO4·H2O in a nitrogen atmosphere. Ind Eng Chem Res. 2010;49:3146–51.

    Article  CAS  Google Scholar 

  23. Wang W, Gao X, Zheng L, Lan Y. Reductive dechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans in MSWI Fly ash by sodium hypophosphite. Sep Purif Technol. 2006;52:186–90.

    Article  CAS  Google Scholar 

  24. Pejov L, Šoptrajanov B, Jovanovski G. Very low H–O–H bending frequencies. II. quantum chemical study of the water bending potential in compounds of the MKPO4·H2O types. J Mol Struct. 2001;563–564:321–7.

    Article  Google Scholar 

  25. Šoptrajanov B. Very low H–O–H bending frequencies. I. Overview and infrared spectra of NiKPO4·H2O and its deuterated analogues. J Mol Struct. 2000;555:21–30.

    Article  Google Scholar 

  26. Šoptrajanov B, Jovanovski G, Pejov L. Very low H–O–H bending frequencies. III. fourier transform infrared study of cobalt potassium phosphate monohydrate and manganese potassium phosphate monohydrate. J Mol Struct. 2002;613:47–54.

    Article  Google Scholar 

  27. Falk M. The frequency of the H—O—H bending fundamental in solids and liquids. Spectrochim Acta. 1984;40A:43–8.

    Article  CAS  Google Scholar 

  28. Khawam A. Flanagan DR, Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.

    Article  CAS  Google Scholar 

  29. Huang Y, Xia Y, Lioa S, Tong Z, Liu G, Li Y, Chen Z. Synthesis of α-Al2O3 platelets and kinetics study for thermal decomposition of its precursor in molten salt. Ceram Int. 2014;40:8071–9.

    Article  CAS  Google Scholar 

  30. Gao X, Dollomore D. The thermal decomposition of oxalates: part 26. A kinetic study of the thermal decomposition of manganese(II) oxalate dehydrate. Thermochim Acta. 1993;215:47–63.

    Article  CAS  Google Scholar 

  31. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 2008;81:253–62.

    Article  CAS  Google Scholar 

  32. Gao Z, Wang H, Nakada M. Iterative method to improve calculation of the pre-exponential factor for dynamic thermogravimetric analysis measurement. Polymer. 2006;47:1590–6.

    Article  CAS  Google Scholar 

  33. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius equation. J Therm Anal Calorim. 1977;11:445–7.

    Article  Google Scholar 

  34. Liqing L, Donghua C. Application of iso-temperature method of multiple rate to kinetic :analysis dehydration for calcium oxalate monohydrate. J Therm Anal Calorim. 2004;78:283–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Chemistry, Faculty of Science and Department of Environmental Engineering (For XRD), Faculty of Engineering of Khon Kaen University and Materials Chemistry Research Center for providing research facilities. The financial support from Khon Kaen University and Faculty of Science is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pittayagorn Noisong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danvirutai, C., Noisong, P. Combined facile methods of the DSC and origin lab program to study the dehydration kinetics of KMnPO4·H2O. J Therm Anal Calorim 119, 2249–2255 (2015). https://doi.org/10.1007/s10973-014-4319-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4319-9

Keywords

Navigation