Skip to main content
Log in

Thermal analysis of clathrates of tripeptide LLL with organic compounds and water

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Clathrates of l-leucyl-l-leucyl-l-leucine tripeptide (LLL) formed in a solid host/guest vapor system have been studied using X-ray powder diffraction and by simultaneous thermogravimetry and differential scanning calorimetry, combined with mass-spectrometric detection of the evolved vapors. A decrease in the thermal stability of the clathrates was observed as the molecular size of bound organic guests increased. Powdered LLL clathrates with pyridine, and unusually benzene, were found to have a higher thermal stability than expected. However, thin films of the tripeptide clathrate LLL with pyridine were less stable at room temperature. These results can be used to predict the thermal stability of clathrates of short-chain oligopeptides with organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Self-assembled peptide nanostructures. Castillo J, Sasso L, Svendsen WE, editors. NW: Taylor & Francis Group–Broken Sound Parkway; 2012.

  2. Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science. 2003;300:625–7.

    Article  CAS  Google Scholar 

  3. Soldatov DV, Moudrakovski IL, Grachev EV, Ripmeester JA. Micropores in crystalline dipeptides as seen from the crystal structure, He pycnometry, and 129Xe NMR spectroscopy. J Am Chem Soc. 2006;128:6737–44.

    Article  CAS  Google Scholar 

  4. Busseron E, Ruff Y, Moulin E, Giuseppone N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale. 2013;5:7098–140.

    Article  CAS  Google Scholar 

  5. Yan X, Zhu P, Li J. Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev. 2010;39:1877–90.

    Article  CAS  Google Scholar 

  6. Ryu J, Kim S-W, Kang K, Park CB. Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. ACS Nano. 2010;4:159–64.

    Article  CAS  Google Scholar 

  7. Ryu J, Kim S-W, Kang K, Park CB. Mineralization of self-assembled peptide nanofibers for rechargeable lithium ion batteries. Adv Mater. 2010;22:5537–41.

    Article  CAS  Google Scholar 

  8. Zhao X, Pan F, Xu H, Yaseen M, Shan H, Hauser CAE, Zhang Sh, Lu JR. Molecular self-assembly and applications of designer peptide amphiphiles. Chem Soc Rev. 2010;39:3480–98.

    Article  CAS  Google Scholar 

  9. Adler-Abramovich L, Kol N, Yanai I, Barlam D, Shneck RZ, Gazit E, Rousso I. Self-assembled organic nanostructures with metallic-like stiffness. Angew Chem Int Ed Engl. 2010;49:9939–42.

    Article  CAS  Google Scholar 

  10. Burchell TJ, Soldatov DV, Ripmeester JA. Crystal structure of the co-crystal Ala-Val Ala H2O: a layered inclusion compound. J Struct Chem. 2008;49:188–91.

    Article  CAS  Google Scholar 

  11. Akazome M, Ueno Y, Ooiso H, Ogura K. Enantioselective inclusion of methyl phenyl sulfoxides and benzyl methyl sulfoxides by (R)-phenylglycyl-(R)-phenylglycine and the crystal structures of the inclusion cavities. J Org Chem. 2000;65:68–76.

    Article  CAS  Google Scholar 

  12. Görbitz CH. Microporous organic materials from hydrophobic dipeptides. Chem Eur J. 2007;13:1022–31.

    Article  Google Scholar 

  13. Sanchez-Quesada J, Isler MP, Ghadiri MR. Modulating ion channel properties of transmembrane peptide nanotubes through heteromeric supramolecular assemblies. J Am Chem Soc. 2002;124:10004–5.

    Article  CAS  Google Scholar 

  14. Adler-Abramovich L, Reches M, Sedman VL, Allen S, Tendler SJB, Gazit E. Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications. Langmuir. 2006;22:1313–20.

    Article  CAS  Google Scholar 

  15. Sedman VL, Adler-Abramovich L, Allen S, Gazit E, Tendler SJB. Direct observation of the release of phenylalanine from diphenylalanine nanotubes. J Am Chem Soc. 2006;128:6903–8.

    Article  CAS  Google Scholar 

  16. Ryu J, Park CB. High stability of self-assembled peptide nanowires against thermal, chemical, and proteolytic attacks. Biotechnol Bioeng. 2010;105:221–30.

    Article  CAS  Google Scholar 

  17. Afonso R, Mendes A, Gales L. Peptide-based solids: porosity and zeolitic behavior. J Mater Chem. 2012;22:1709–23.

    Article  CAS  Google Scholar 

  18. Comotti A, Fraccarollo A, Bracco S, Beretta M, Distefano G, Cossi M, Marchese L, Riccardi C, Sozzani P. Porous dipeptide crystals as selective CO2 adsorbents: experimental isotherms vs. grand canonical Monte Carlo simulations and MAS NMR spectroscopy. CrystEngComm. 2013;15:1503–7.

    Article  CAS  Google Scholar 

  19. Soldatov DV, Moudrakovski IL, Ripmeester JA. Dipeptides as microporous materials. Angew Chem Int Ed Engl. 2004;43:6308–11.

    Article  CAS  Google Scholar 

  20. Durao J, Gales L. Guest diffusion in dipeptide crystals. CrystEngComm. 2013;15:1532–5.

    Article  CAS  Google Scholar 

  21. Tian J, Thallapally PK, McGrail BP. Porous organic molecular materials. CrystEngComm. 2012;14:1909–19.

    Article  CAS  Google Scholar 

  22. Zhang S-Y, Talu O, Hayhurst DT. High-pressure adsorption of methane in NaX, MgX, CaX, SrX, and BaX. J Phys Chem. 1991;5:1722–6.

    Article  Google Scholar 

  23. Babarao R, Hu Zh, Jiang J. Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. Langmuir. 2007;23:659–66.

    Article  CAS  Google Scholar 

  24. Sozzani P, Bracco S, Comotti A, Ferretti L, Simonutti R. Methane and carbon dioxide storage in a porous van der Waals crystal. Angew Chem Int Ed Engl. 2005;44:1816–20.

    Article  CAS  Google Scholar 

  25. Kondo M, Shimamura M, Noro SI, Minakoshi S, Asami A, Seki K, Kitagawa S. Microporous materials constructed from the interpenetrated coordination networks. Structures and methane adsorption properties. Chem Mater. 2000;12:1288–99.

    Article  CAS  Google Scholar 

  26. Galyaltdinov ShF, Ziganshin MA, Drapailo AB, Gorbatchuk VV. Unusually high selectivity of guest exchange in tert-butylthiacalix[4]arene clathrate producing more thermostable inclusion and memory of guest. J Phys Chem B. 2012;116:11379–85.

    Article  CAS  Google Scholar 

  27. Atwood JL, Barbour LJ, Jerga A. A new type of material for the recovery of hydrogen from gas mixtures. Angew Chem Int Ed Engl. 2004;43:2948–50.

    Article  CAS  Google Scholar 

  28. Comotti A, Bracco S, Distefano G, Sozzani P. Methane, carbon dioxide and hydrogen storage in nanoporous dipeptide-based materials. Chem Commun. 2009;3:284–6.

    Article  Google Scholar 

  29. Guha S, Banerjee A. Macroporous materials from self-assembling synthetic cyclic peptide-based compounds and deposition of dipeptide-capped gold nanoparticles on the surfaces. Macromol Chem Phys. 2009;210:1422–32.

    Article  CAS  Google Scholar 

  30. Jana P, Maity S, Maity SK, Haldar D. A new peptide motif in the formation of supramolecular double helices. Chem Commun. 2011;47:2092–4.

    Article  CAS  Google Scholar 

  31. Ziganshin MA, Efimova IG, Gorbatchuk VV, Ziganshina SA, Chuklanov AP, Bukharaev AA, Soldatov DV. Interaction of l-leucyl-l-leucyl-l-leucine thin film with water and organic vapors: receptor properties and related morphology. J Peptide Sci. 2012;18:209–14.

    Article  CAS  Google Scholar 

  32. Efimova IG, Ziganshin MA, Gorbatchuk VV, Soldatov DV, Ziganshina SA, Chuklanov AP, Bukharaev AA. Formation of nanoislands on the surface of thin dipeptide films under the effect of vaporous organic compounds. Prot Met Phys Chem Surf. 2009;45:525–8.

    Article  CAS  Google Scholar 

  33. Ziganshin MA, Efimova IG, Bikmukhametova AA, Gorbachuk VV, Ziganshina SA, Chuklanov AP, Bukharaev AA. The effect of a substrate on the morphology of dipeptide (L-valyl- l -alanine) films before and after their interaction with pyridine vapor. Prot Met Phys Chem Surf. 2013;49:274–9.

    Article  CAS  Google Scholar 

  34. Ryu J, Park CB. Solid-phase growth of nanostructures from amorphous peptide thin film: effect of water activity and temperature. Chem Mater. 2008;20:4284–90.

    Article  CAS  Google Scholar 

  35. Burchell TJ, Soldatov DV, Enrighta GD, Ripmeester JA. The ability of lower peptides to form co-crystals: inclusion compounds of Leu-Leu-Leu tripeptide with pyridine and picolines. CrystEngComm. 2007;9:922–9.

    Article  CAS  Google Scholar 

  36. Go K, Parthasarathy R. Crystal structure and a twisted and sheet conformation of the tripeptidel-leucyl-l-leucyl-l-leucine monohydrate trimethanol solvate: conformation analysis of tripeptides. Biopolymers. 1995;36:607–14.

    Article  CAS  Google Scholar 

  37. Armarego WLF, Chai CLL. Purification of laboratory chemicals. Armarego WLF, Chai CLL, editors. 6th ed. Oxford: Butterworth-Heinemann; 2009.

  38. Yakimova LS, Ziganshin MA, Sidorov VA, Kovalev VV, Shokova EA, Tafeenko VA, Gorbatchuk VV. Molecular recognition of organic vapors by adamantylcalix[4]arene in QCM sensor using partial binding reversibility. J Phys Chem B. 2008;112:15569–75.

    Article  CAS  Google Scholar 

  39. Ziganshin MA, Yakimov AV, Safina GD, Solovieva SE, Antipin IS, Gorbatchuk VV. Nonregular structure–property relationships for inclusion parameters of tert-butylcalix[5]arene. Org Biomol Chem. 2007;5:1472–8.

    Article  CAS  Google Scholar 

  40. Khabibullin AA, Safina GD, Ziganshin MA, Gorbatchuk VV. Thermal analysis of charge-transfer complex formed by nitrogen dioxide and substituted calix[4]arene: characterization of complexation reversibility. J Therm Anal Calorim. 2012;110:1309–13.

    Article  CAS  Google Scholar 

  41. Gatiatulin AK, Ziganshin MA, Gorbatchuk VV. Selective preparation of beta-cyclodextrin clathrates by solid-phase exchange of included tetrahydrofurane for volatile guests in absence of water. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-014-3800-9.

    Google Scholar 

  42. Lange’s Handbook of Chemistry. 16th ed. James G. Speight, editor. New York: McGraw-Hill Education LLC; 2005. p. 4192.

  43. Nassimbeni LR. Physicochemical aspects of host-guest compounds. Acc Chem Res. 2003;36:631–7.

    Article  CAS  Google Scholar 

  44. Logvinenko VA, Sapchenko SA, Fedin VP. Thermal decomposition of inclusion compounds on the base of the metal–organic framework [Zn4(dmf)(ur)2(ndc)4]. J Therm Anal Calorim. 2014;117:747–53.

    Article  CAS  Google Scholar 

  45. Galyaltdinov SF, Ziganshin MA, Gubaidullin AT, Vyshnevsky SG, Kalchenko OI, Gorbatchuk VV. Anti-sieve effect in guest inclusion by thiacalix[4]arene giving a surge in thermal stability of its clathrates prepared by solid-phase guest exchange. CrystEngComm. 2014;16:3781–7.

    Article  CAS  Google Scholar 

  46. Logvinenko V, Drebushchak V, Pinakov D, Chekhova G. Thermodynamic and kinetic stability of inclusion compounds under heating. J Therm Anal Calorim. 2007;90:23–30.

    Article  CAS  Google Scholar 

  47. Logvinenko V. Stability of supramolecular compounds under heating thermodynamic and kinetic aspects. J Therm Anal Calorim. 2010;101:577–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Foundation for Basic Research, Project No. 12-03-00590-a and Russian Government Program of Competitive Growth of Kazan Federal University. The equipment of Federal Center of Shared Equipment FCKP FChI of Kazan Federal University was used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat A. Ziganshin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziganshin, M.A., Gerasimov, A.V., Gorbatchuk, V.V. et al. Thermal analysis of clathrates of tripeptide LLL with organic compounds and water. J Therm Anal Calorim 119, 1811–1816 (2015). https://doi.org/10.1007/s10973-014-4279-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4279-0

Keywords

Navigation