Skip to main content
Log in

Effect of heat convection on the thermal and structure stress of high-power InGaN light-emitting diode

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, two models are investigated: (1) the convection cooling of high-power indium–gallium–nitride light-emitting diodes (LEDs) and (2) the effects of thermal stress distribution. The first model chip (model A) has power of 1 and 3 W and dimensions of 1 mm × 1 mm × 0.005 mm, whereas the second model chip (model B) has power of 6 and 10 W and dimensions of 1.8 mm × 1.8 mm × 0.005 mm. The results of an analysis of natural convection, forced cooling, and thermal stress are compared with 1, 3, 6, and 10 W thermal specification data. High heat conductivity Al2O3 material used as a printed circuit board (PCB) facilitates the heat conduction and thermal cooling of high-power LEDs and thus increases the strength of the structure. This LED structure model is used in full-scale packaging structures. The wire bonding convection cooling and effect of thermal stress distribution of this packaging design are investigated. We simulate thermal performance and effect of thermal stress distribution of the LEDs using a finite element method with ANSYS software. Heat transfer is coupled with heat conduction, heat convection, and thermal radiation, with the distribution of thermal stress equivalent to that of the von Mises criterion stress. LED is attached to a silicon substrate by wire bonding; the die bond material used is epoxy. LED packaging material is important. If the LED lighting power is fixed, it can increase the convection cooling coefficient, decreases the T j temperature, and the distribution of structural stress. The T j temperature is stable when the heat transfer coefficient had a critical or optimal value. Thermal cooling performance and overall structural strength can be improved when the LED is mounted on the Al2O3 PCB material and heat sink. The models are employed accurately to determine the heat transfer effect, structural strength, life span, performance enhancement, and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

CMM:

Cubic meter per minute (m3 min−1)

c :

Specific heat capacity of the material (J kg−1 K−1)

E :

The Young’s modulus coefficient (GPa)

FEM:

Finite element method

h c :

Heat transfer coefficient or heat convection coefficient (W m−2 K−1)

InGaN:

Indium–gallium–nitride

k a :

The air conductivity coefficient (W m−1 K−1)

k x, k y, k z :

Heat conductivity coefficient (W m−1 K−1) of the material in the x, y, and z directions, respectively

LEDs:

Light-emitting diodes

L ch :

The characteristic length of the geometries

n x, n y, n z :

Normal directions outside the boundary

PCB:

Printed circuit board

P f :

The face loading

Pr :

The Prandtl number (Pr = v/α) (Pr = 0.72 for air)

\( P_{{\epsilon_{\text{o}} }} \) :

The temperature strain-induced loading

P v :

The volume loading

Q = Q(x, y, z, t):

Internal heat source (W kg−1) of the body

q = q(F 2, t):

The given heat flux (W m−2) in the F 2 boundary

T :

Temperature (°C)

\( \bar{T} = \bar{T}(F_{1} ,t) \) :

The given temperature (start setting from 25 °C add to steady state heat transfer temperature) in the F 1 boundary

T a = T a(F 3, t):

The ambient temperature (°C) in natural convection or the adiabatic wall temperature of the boundary layer in forced convection

ΔT :

Difference between surface and ambient temperature, ΔT = T surface −T ambient

T ambient, T a :

Ambient temperature (°C)

T avg. :

Average temperature (°C), \( T_{{{\text{avg}}.}} = {{\left( {T_{\text{surface}} - T_{\text{ambient}} } \right)} \mathord{\left/ {\vphantom {{\left( {T_{\text{surface}} - T_{\text{ambient}} } \right)} 2}} \right. \kern-0pt} 2} \)

T case :

Case temperature (°C) for LED

T j :

Junction temperature (°C) for LED

T j,spec. :

Junction temperature (°C) for LED specification

T o :

Initial temperature (°C) of the material structure

T surface :

Surface temperature (°C)

t :

Time (s)

W cons. :

LED power consumption (Watt)

W act :

LED actual input power (Watt)

α :

Thermal expansion coefficient (°C−1) of the material

α :

The thermal diffusivity

ɛ – ɛ o :

Difference in temperature-induced strain

ν :

The momentum diffusivity

ρ :

Density (kg m−3)

σ :

The normal or thermal stress (MPa)

References

  1. Arik M, Petroski J, Weaver SE. Thermal challenges in the future generation solid state lighting applications: light emitting diodes. In: The 8th intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITHERM 2002), San Diego, California, USA, June 1, 2002.

  2. Arik M, Becker CA, Weaver SE, Petroski J. Thermal management of LEDs: package to system. In: The 3rd international conference on solid state lighting. 2004;5187:64–75.

  3. Haque S, Steigerwald D, Rudaz S, Steward B, Bhat J, Collins D, Wall F, Subramanya S, Elpedes C, Elizondo P, Martin PS. Packaging challenges of high-power LEDs for solid state lighting. In: International microelectronics and packaging society and the microelectronics foundation (IMAPS 2003)—36th international symposium on microelectronics, Boston, MA, USA, November 16–20, 2003.

  4. Hsu CY, Lin Y. Junction temperature of high-power LED packages with diamond film. In: IEEE 3rd international nanoelectronics conference (INEC 2010), Hong Kong, China, January 3–8, 2010.

  5. Karlicek RF. High power LED packaging. In: 2005 Conference on lasers & electro-optics (CLEO 2005), CMT—LED packaging and mid-IR devices, Baltimore, MD, USA, May 22–27, 2005.

  6. Hu JH, Yang LQ, Shin MW. Thermal effects of moisture inducing delamination in light-emitting diode packages. In: 56th electronic components and technology conference (ECTC 2006), San Diego, California, May 30-June 2, 2006.

  7. Han CN, Chou TL, Huang CF, Chiang KN. Sapphire-removed induced the deformation of high power InGaN light emitting diodes. In: 9th international conference on thermal, mechanical, multiphysics simulation, and experiments in micro-electronics and micro-systems, EuroSimE 2008, Freiburg Im Breisgau, Germany, April 20–23, 2008.

  8. Yin L, Yang W, Guo Y, Ma K, Li S, Chen M, Li J, Zhang J. Multi-chip integrated high-power white LED device on the multi-layer ceramic substrate. In: 58th electronic components and technology conference (ECTC 2008), Lake Buena Vista, Florida, May 27–30, 2008.

  9. Yan B, You JP, Tran NT, He Y, Shi FG. Influence of die attach layer on thermal performance of high power light emitting diodes. IEEE Trans Compon Packag Technol. 2010;33(4):722–7.

    Article  Google Scholar 

  10. Swiatczak T, Olbrycht R, Apolinarzak J, Wiecek B, De Mey G. Pulse thermography measurements of heat dissipation from high power LED. In: 2009 MIXDES—16th international conference on mixed design of integrated circuits & systems (MIXDES ‘09), June 25–27, 2009.

  11. Tan L, Li J, Wang K, Liu S. Effects of defects on the thermal and optical performance of high—brightness light—emitting diodes. IEEE Trans Electron Packag Manuf. 2009;32(4):233–40.

    Article  CAS  Google Scholar 

  12. Vandepol DW, Tierney JK. Free convection heat transfer from vertical fin-arrays. IEEE Trans Parts Hybrids Packag. 1974;PHP-10(4):267–71.

    Article  Google Scholar 

  13. Luo H, Kim KS, Xi Y, Cho J, Sone C, Park Y, Schubert EF. High-power packages for phosphor-based white-light-emitting diode lamps. In: 2005 international semiconductor device research symposium (ISDRS), Bethesda, MD, USA, December 7–9, 2005.

  14. Chi WH, Chou TL, Han CN, Chiang KN. Analysis of thermal performance of high power light emitting diodes package. In: 10th electronics packaging technology conference (EPTC 2008), Singapore, December 9–12, 2008.

  15. Chou TL, Huang CF, Han CN, Yang SY, Chiang KN. Fabrication process simulation and reliability improvement of high-brightness LEDs. Microelectron Reliab. 2009;49(9–11):1244–9.

    Article  CAS  Google Scholar 

  16. Lin Z, Wang S, Huo J, Hu Y, Chen J, Zhang W, Lee E. Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes. Appl Therm Eng. 2011;31:2221–9.

    Article  CAS  Google Scholar 

  17. Anithambigai P, Dinash K, Mutharasu D, Shanmugan S, Lim CK. Thermal analysis of power LED employing dual interface method and water flow as a cooling system. Thermochim Acta. 2011;523:237–44.

    Article  CAS  Google Scholar 

  18. Li J, Ma B, Wang R, Han L. Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs. Microelectron Reliab. 2011;51:2210–5.

    Article  CAS  Google Scholar 

  19. Dong S, Zhou Q, Wang M, Jiang X, Yang J. Analysis of thermal spreading resistance in high power LED package and its design optimization. In: 12th international conference on electronic packaging technology and high density packaging (ICEPT-HDP 2011), Shanghai, China, August 8–11, 2011.

  20. Kailin P, Guotao R, Peng L, Peng H. Thermal analysis of multi-chip module high power LED packaging. In: 12th international conference on electronic packaging technology and high density packaging (ICEPT-HDP 2011), Shanghai, China, August 8–11, 2011.

  21. Šesták J. Thermal science and analysis. J Therm Anal Calorim. 2013;113(3):1049–54.

    Article  Google Scholar 

  22. Fukuoka S, Horie Y, Yamashita S, Nakazawa Y. Development of heat capacity measurement system for single crystals of molecule-based compounds. J Therm Anal Calorim. 2013;113(3):1303–8.

    Article  CAS  Google Scholar 

  23. Hsu CN, Chang YH, Liu CY, Fang SH, Huang CC. Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode. Therm Sci. 2013;17(5):1277–83.

    Article  Google Scholar 

  24. Durrani SK, Naz S, Nadeem M, Khan AA. Thermal, structural, and impedance analysis of nanocrystalline magnesium chromite spinel synthesized via hydrothermal process. J Therm Anal Calorim. 2014;116(1):309–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Science and Technology of Taiwan of the Republic of China for financially supporting this research under contract number NSC 102-2622-E-167-022-CC3, NSC 101-2622-E-167-014-CC3, and NSC 100-2815-C-167-002-E. Thanks for the retired Associate Professor Chang-Yuan Liu suggest in solid state lighting element, and the Associate Professor Yu-Lieh Wu support the standard airflow rate apparatus (AMCA 210-99).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Neng Hsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, CN., Huang, CC. & Wu, YH. Effect of heat convection on the thermal and structure stress of high-power InGaN light-emitting diode. J Therm Anal Calorim 119, 1245–1257 (2015). https://doi.org/10.1007/s10973-014-4221-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4221-5

Keywords

Navigation