Skip to main content
Log in

Effect of the length ratio on thermal energy storage in wedge-shaped enclosures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, a fundamental practical unit, namely the wedge-shaped enclosure, is proposed as a novel and efficient latent heat storage unit for thermal energy storage. The enthalpy–porosity method that treats the solid and liquid zones as a single domain is employed. Effect of the mushy zone constant C on melting is analyzed and a suitable value is obtained by comparing the numerical results with experimental data in the literature. A series of simulations are conducted to analyze the transient melting coupled with natural convection as well as the heat transfer process. Fourteen units those have different length ratios between top and bottom of the enclosures are investigated and compared by the analysis of transient temperature fields, vertical velocity distributions, and evolution of the melting fronts. It is found that the length ratio n dramatically affects the full melting time and heat transfer intensity. An enclosure of n = 5.5, which has the shortest completion time and the highest heat transfer intensity, is determined as the optimal unit. Compared with the base geometry (n = 1), charging time of the optimal unit (n = 5.5) decreased by 32.8 %, while the heat transfer intensity increased by 45.7 %. This is a significant improvement in the field of latent heat storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Omari KE, Kousksou T, Guer YL. Impact of shape of container on natural convection and melting inside enclosures used for passive cooling of electronic devices. Appl Therm Eng. 2011;31:3022–35.

    Article  Google Scholar 

  2. Jeong SG, Jeon J, Cha J, Kim J, Kim S. Preparation and evaluation of thermal enhanced silica fume by incorporating organic PCM, for application to concrete. Energy Build. 2013;62:190–5.

    Article  Google Scholar 

  3. Jeong SG, Jeon J, Lee JH, Kim S. Optimal preparation of PCM/diatomite composites for enhancing thermal properties. Int J Heat Mass Transf. 2013;62:711–7.

    Article  CAS  Google Scholar 

  4. Baby R, Balaji C. Experimental investigations on thermal performance enhancement and effect of orientation on porous matrix filled PCM based heat sink. Int Commun Heat Mass. 2013;46:27–30.

    Article  CAS  Google Scholar 

  5. Mosaffa AH, Ferreira CA, Talati F, Rosen MA. Thermal performance of a multiple PCM thermal storage unit for free cooling. Energy Convers Manag. 2013;67:1–7.

    Article  CAS  Google Scholar 

  6. Harikrishnan S, Deepak K, Kalaiselvam S. Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. J Therm Anal Calorim. 2014;115:1563–71.

    Article  CAS  Google Scholar 

  7. Mat S, Al-Abidi AA, Sopian K, Sulaiman MY, Mohammad AT. Enhance heat transfer for PCM melting in triplex tube with internal–external fins. Energy Convers Manag. 2013;74:223–36.

    Article  CAS  Google Scholar 

  8. Baby R, Balaji C. Thermal optimization of PCM based pin fin heat sinks: an experimental study. Appl Therm Eng. 2013;54:65–77.

    Article  CAS  Google Scholar 

  9. Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev. 2010;14:615–28.

    Article  CAS  Google Scholar 

  10. Akgün M, Aydin O, Kaygusuz K. Experimental study on melting/solidification characteristics of a paraffin as PCM. Energy Convers Manag. 2007;48:669–78.

    Article  Google Scholar 

  11. Koizumi H, Jin YH. Performance enhancement of a latent heat thermal energy storage system using curved-slab containers. Appl Therm Eng. 2012;37:145–53.

    Article  CAS  Google Scholar 

  12. Akhilesh R, Narasimhan A, Balaji C. Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. Int J Heat Mass Transf. 2005;48:2759–70.

    Article  Google Scholar 

  13. Ye WB, Zhu DS, Nan Wang N. Effect of the inclination angles on thermal energy storage in a quadrantal cavity. J Therm Anal Calorim. 2012;110:1487–92.

    Article  CAS  Google Scholar 

  14. Darzi AR, Farhadi M, Sedighi K. Numerical study of melting inside concentric and eccentric horizontal annulus. Appl Math Model. 2012;36:4080–6.

    Article  Google Scholar 

  15. Gong ZX, Devahastin S, Mujumdar A. Enhanced heat transfer in free convection-dominated melting in a rectangular cavity with an isothermal vertical wall. Appl Therm Eng. 1999;19:1237–51.

    Article  CAS  Google Scholar 

  16. Alawadhi EM. Phase change process with free convection in a circular enclosure: numerical simulations. Comput Fluids. 2004;33:1335–48.

    Article  CAS  Google Scholar 

  17. Tan FL, Hosseinizadeh SF, Khodadadi JM, Fan LW. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int J Heat Mass Transf. 2009;52:3464–72.

    Article  CAS  Google Scholar 

  18. VollerVR PrakashC. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int J Heat Mass Transf. 1987;30:1709–19.

    Article  Google Scholar 

  19. Hannoun N, Alexiades V, Mai TZ. A reference solution for phase change with convection. Int J Numer Meth Fluids. 2005;48:1283–308.

    Article  CAS  Google Scholar 

  20. Gau C, Viskanta R. Melting and solidification of a pure metal on a vertical wall. J Heat Trans-T Asme. 1986;108:174–81.

    Article  CAS  Google Scholar 

  21. Shmueli H, Ziskind G, Letan R. Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments. Int J Heat Mass Transf. 2010;53:4082–91.

    Article  CAS  Google Scholar 

  22. FLUENT 6.3 User’s Guide.

  23. Arasu AV, Mujumdar AS. Numerical study on melting of paraffin wax with Al2O3 in a square enclosure. Int Commun Heat Mass. 2012;39:8–16.

    Article  CAS  Google Scholar 

  24. Jones BJ, Sun DW, Krishnan S, Garimella SV. Experimental and numerical study of melting in a cylinder. Int J Heat Mass Transf. 2006;49:2724–38.

    Article  Google Scholar 

Download references

Acknowledgments

Support from the National Science and Technology Supporting Program (No. 2011BAJ03B03) in this study is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Li, A., Gao, R. et al. Effect of the length ratio on thermal energy storage in wedge-shaped enclosures. J Therm Anal Calorim 117, 807–816 (2014). https://doi.org/10.1007/s10973-014-3843-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3843-y

Keywords

Navigation