Skip to main content
Log in

Thermal stability of Ti–MCM-41

Effects of Ti loading amount and synthesis conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ti containing mesoporous MCM-41 materials have been synthesized through two methods: heating and non-heating [room temperature (RT)]. The synthesized materials have been characterized using X-ray diffraction, Fourier transform infrared, nitrogen sorption, and X-ray fluorescence methods and their thermal stabilities evaluated using thermogravimetric methods in inert atmosphere. The thermal stabilities have been analyzed based on the synthesis method, as well as on the amount of titanium in the MCM-41 materials. The thermal stability results suggest that uncalcined MCM-41 materials generally show higher mass loss than their calcined counterparts. Also, the RT-synthesized materials showed lower stability than the high-temperature synthesized samples for the uncalcined samples. It is also been found that MCM-41 materials show improved thermal stabilities as the amount of titanium is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.

    Article  CAS  Google Scholar 

  2. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992;114:10834–43.

    Article  CAS  Google Scholar 

  3. Beck JS, Inventor Mobil Oil Corporation, Assignee. Method for synthesizing mesoporous crystalline material. United States Patent 5057296, 15 Oct 1991; 1991.

  4. Huh S, Wiench JW, Trewyn BG, Song S, Pruski M, Lin VSY. Tuning of particle morphology and pore properties in mesoporous silicas with multiple organic functional groups. Chem Commun. 2003;18:2364–5.

    Article  Google Scholar 

  5. Hu X, Foo ML, Chuah GK, Jaenicke S. Pore size engineering on MCM-41: selectivity tuning of heterogenized AlCl3 for the synthesis of linear alkyl benzenes. J Catal. 2000;195:412–5.

    Article  CAS  Google Scholar 

  6. Wang A, Kabe T. Fine-tuning of pore size of MCM-41 by adjusting the initial pH of the synthesis mixture. Chem Commun. 1999;20:2067–8.

    Article  Google Scholar 

  7. Zhao SX, Lu GQ, Hu X. A novel method for tailoring the pore-opening size of MCM-41 materials. Chem Commun. 1999;15:1391–2.

    Article  Google Scholar 

  8. Liou T-H. A green route to preparation of MCM-41 silicas with well-ordered mesostructure controlled in acidic and alkaline environments. Chem Eng J. 2011;171:1458–68.

    Article  CAS  Google Scholar 

  9. Zhang K, Chen H-L, Albela B, Jiang J-G, Wang Y-M, He M-Y, Bonneviot L. High-temperature synthesis and formation mechanism of stable, ordered MCM-41 silicas by using surfactant cetyltrimethylammonium tosylate as template. Eur J Inorg Chem. 2011;2011:59–67.

    Article  Google Scholar 

  10. Selvaraj M, Sinha PK, Park DW, Kim I, Kawi S, Ha CS. Selective synthesis of 6,8-di-t-butylated flavan over Zn–Al containing mesoporous silica catalysts. Dalton Trans. 2012;41:14197–203.

    Article  CAS  Google Scholar 

  11. Wang S, Shi Y, Ma X, Gong J. Tuning porosity of Ti–MCM-41: implication for shape selective catalysis. ACS Appl Mater Interfaces. 2011;3:2154–60.

    Article  CAS  Google Scholar 

  12. Ravikovitch PI, Wei D, Chueh WT, Haller GL, Neimark AV. Evaluation of pore structure parameters of MCM-41 catalyst supports and catalysts by means of nitrogen and argon adsorption. J Phys Chem B. 1997;101:3671–9.

    Article  CAS  Google Scholar 

  13. Liepold A, Roos K, Reschetilowski W. Mesoporous MCM-41 materials—effect of acidity and porosity on catalytic properties. Chem Eng Sci. 1996;51:3007–12.

    Article  CAS  Google Scholar 

  14. Galarneau A, Desplantier-Giscard D, Di Renzo F, Fajula F. Thermal and mechanical stability of micelle-templated silica supports for catalysis. Catal Today. 2001;68:191–200.

    Article  CAS  Google Scholar 

  15. Yuan Q, Zhang Y, Chen T, Lu D, Zhao Z, Zhang X, Li Z, Yan C-H, Tan W. Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid. ACS Nano. 2012;6:6337–44.

    Article  CAS  Google Scholar 

  16. Jang HR, Oh H-J, Kim J-H, Jung KY. Synthesis of mesoporous spherical silica via spray pyrolysis: pore size control and evaluation of performance in paclitaxel pre-purification. Microporous Mesoporous Mater. 2013;165:219–27.

    Article  CAS  Google Scholar 

  17. Luan Z, Cheng C-F, Zhou W, Klinowski J. Mesopore molecular sieve MCM-41 containing framework aluminum. J Phys Chem. 1995;99:1018–24.

    Article  CAS  Google Scholar 

  18. Tanev PT, Chibwe M, Pinnavaia TJ. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature. 1994;368:321–3.

    Article  CAS  Google Scholar 

  19. Kumar N, Kubicka D, Garay AL, Mäki-Arvela P, Heikkilä T, Salmi T, Murzin DY. Synthesis of Ru-modified MCM-41 mesoporous material, Y and beta zeolite catalysts for ring opening of decalin. Top Catal. 2009;52:380–6.

    Article  CAS  Google Scholar 

  20. Busuioc AM, Meynen V, Beyers E, Mertens M, Cool P, Bilba N, Vansant EF. Structural features and photocatalytic behaviour of titania deposited within the pores of SBA-15. Appl Catal A. 2006;312:153–64.

    Article  CAS  Google Scholar 

  21. Hagen A, Schueler K, Roessner F. The performance of Ti–MCM-41 in aqueous media and after mechanical treatment studied by in situ XANES, UV/Vis and test reactions. Microporous Mesoporous Mater. 2002;51:23–33.

    Article  CAS  Google Scholar 

  22. Reddy EP, Sun B, Smirniotis PG. Transition metal modified TiO2-loaded MCM-41 catalysts for visible- and UV-light driven photodegradation of aqueous organic pollutants. J Phys Chem B. 2004;108:17198–205.

    Article  CAS  Google Scholar 

  23. Li B, Wang J, Fu J, Wang J, Zou C. Selective liquid phase oxidation of benzoin to benzil over transition metals doped MCM-41 with air. Catal Commun. 2008;9:2000–2.

    Article  CAS  Google Scholar 

  24. Karthik M, Lin L-Y, Bai H. Bifunctional mesoporous Cu–Al–MCM-41 materials for the simultaneous catalytic abatement of NO x and VOCs. Microporous Mesoporous Mater. 2009;117:153–60.

    Article  CAS  Google Scholar 

  25. Shanmugapriya K, Palanichamy M, Balasubramanian VV, Murugesan V. Vapour phase reaction of m-cresol and ethyl acetate over MCM-41 molecular sieves: one-pot synthesis of coumarin derivatives. Microporous Mesoporous Mater. 2006;95:272–8.

    Article  CAS  Google Scholar 

  26. Pârvulescu V, Anastasescu C, Su BL. Bimetallic Ru–(Cr, Ni, or Cu) and La–(Co or Mn) incorporated MCM-41 molecular sieves as catalysts for oxidation of aromatic hydrocarbons. J Mol Catal A. 2004;211:143–8.

    Article  Google Scholar 

  27. Pârvulescu V, Tablet C, Anastasescu C, Su BL. Activity and stability of bimetallic Co (V, Nb, La)-modified MCM-41 catalysts. Catal Today. 2004;93–95:307–13.

    Article  Google Scholar 

  28. Occelli ML, Biz S, Auroux A. Effects of isomorphous substitution of Si with Ti and Zr in mesoporous silicates with the MCM-41 structure. Appl Catal A. 1999;183:231–9.

    Article  CAS  Google Scholar 

  29. Szegedi Á, Popova M. Toluene hydrogenation over nickel-containing MCM-41 and Ti–MCM-41 materials. J Porous Mater. 2010;17:663–8.

    Article  CAS  Google Scholar 

  30. Yanishpolskii VV, Pavlenko AN, Tertykh VA, Il’in VG, Leboda R, Skubiszewska-Zieba J. Mesoporous titanium-containing silicas. Synthesis and geometrical characteristics. J Therm Anal Calorim. 2000;62:569–73.

    Article  CAS  Google Scholar 

  31. Jomekian A, Mansoori S, Bazooyar B, Moradian A. Enhancement in thermal and hydrothermal stabilities of novel mesoporous MCM-41. J Porous Mater. 2012;19:979–88.

    Article  CAS  Google Scholar 

  32. Araujo SA, Ionashiro M, Fernandes VJ Jr, Araujo AS. Thermogravimetric investigations during the synthesis of silica-based MCM-41. J Therm Anal Calorim. 2001;64:801–5.

    Article  CAS  Google Scholar 

  33. Goworek J, Kierys A, Gac W, Borwka A, Kusak R. Thermal degradation of CTAB in as-synthesized MCM-41. J Therm Anal Calorim. 1999;96:375–82.

    Article  Google Scholar 

  34. Kusak R. Template transformations in preparation of MCM-41 silica. J Therm Anal Calorim. 2005;79:555–60.

    Article  Google Scholar 

  35. Souza LCK, Pardauil JJR, Zamian JR, Filho GNR, Costa CEF. Influence of the incorporated metal on template removal from MCM-41 type mesoporous materials. J Therm Anal Calorim. 2011;106:355–61.

    Article  CAS  Google Scholar 

  36. Wan K, Liu Q, Zhang C. Thermal stability of Si–MCM-41 in gaseous atmosphere. Mater Lett. 2003;57:3839–42.

    Article  CAS  Google Scholar 

  37. He N, Lu Z, Yuan C, Hong J, Yang C, Bao S, Xu Q. Effect of trivalent elements on the thermal and hydrothermal stability of MCM-41 mesoporous molecular materials. Supramol Sci. 1998;5:553–8.

    Article  CAS  Google Scholar 

  38. He N, Yang C, Dai Q, Wang J, Yuan C, Lu Z. Studies on the state of Fe and La in MCM-41 mesoporous molecular sieve materials by TG analysis and other techniques. J Therm Anal Calorim. 2000;61:827–37.

    Article  CAS  Google Scholar 

  39. Kuang YP, He NY, Wang J, Xiao PF, Yuan CW, Lu ZH. Investigating the state of Fe and La in MCM-41 mesoporous molecular sieve materials. Colloids Surf A. 2001;179:177–84.

    Article  CAS  Google Scholar 

  40. Schacht P, Norena-Franco L, Ancheyta J, Ramirez S, Hernandez-Perez I, Garcia LA. Characterization of hydrothermally treated MCM-41 and Ti–MCM-41 molecular sieves. Catal Today. 2004;98:115–21.

    Article  CAS  Google Scholar 

  41. Vunain E, Opembe NN, Jalama K, Mishra AK, Meijboom R. Thermal stability of amine-functionalized MCM-41 in different atmospheres. J Therm Anal Calorim. 2014;115(2):1487–96. doi:10.1007/s10973-013-3350-6.

  42. Sadjadi MS, Farhadyar N, Zare K. Synthesis of nanosize MCM-41 loaded with TiO2 and study of its photocatalytic activity. Superlattices Microstruct. 2009;46:266–71.

    Article  CAS  Google Scholar 

  43. Lihitkar NB, Abyaneh MK, Samuel V, Pasricha R, Gosavi SW, Kulkarni SK. Titania nanoparticles synthesis in mesoporous molecular sieve MCM-41. J Colloid Interface Sci. 2007;314:310–6.

    Article  CAS  Google Scholar 

  44. Shao GN, Elineema G, Quang DV, Kim YN, Shim YH, Hilonga A, Kim J-K, Kim HT. Two step synthesis of a mesoporous titania–silica composite from titanium oxychloride and sodium silicate. Powder Technol. 2012;217:489–96.

    Article  CAS  Google Scholar 

  45. Wang S, Shi Y, Ma X. Microwave synthesis, characterization and transesterification activities of Ti–MCM-41. Microporous Mesoporous Mater. 2012;156:22–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Meijboom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opembe, N.N., Vunain, E., Mishra, A.K. et al. Thermal stability of Ti–MCM-41. J Therm Anal Calorim 117, 701–710 (2014). https://doi.org/10.1007/s10973-014-3750-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3750-2

Keywords

Navigation