Skip to main content
Log in

Thermal stability and structure of a new co-crystal of theophylline formed with phthalic acid

TG/DTA-EGA-MS and TG-EGA-FTIR study

  • Regular Papers
  • Pharmaceuticals
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A new co-crystal of theophylline and phthalic acid with 1:1 molar ratio has been prepared. It crystallises in the monoclinic crystal system, space group P21/c, a=11.5258(9), b=10.1405(6), c=13.9066(12) Å, β=106.827(4)°. The structure of the co-crystal has been revealed by single crystal X-ray diffraction. An infinite helical polymeric chain is formed by intermolecular hydrogen bonds of the two neutral constituents. The hydroxyl group and carbonyl oxygen atom in one of the carboxyl groups of phthalic acid form hydrogen bonds to O6 and to N(7)H atoms of theophylline, respectively, while the other carboxyl OH group of phthalic acid is in hydrogen bond to N9 atom of theophylline by very strong intermolecular interactions proven by 1883 cm−1 centred peak in FTIR spectrum.

Thermal degradation of this new supramolecular compound is a two-step process in air. At first phthalic acid (47.4%) released up to 230°C, meanwhile it loses water and transforms into phthalic anhydride. In EGA-MS spectra, the characteristic fragments of water (m/z=17, 18) appear from about 180°C, while absorption bands of phthalic anhydride are shown in EGA-FTIR spectrum at about 210°C. In the second step theophylline begins to sublime, melts at 276°C, and then evaporates up to 315°C with minute residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martindale, The Complete Drug Reference, Sean C. Sweetman, Great Britain 2002.

  2. T. Okano, K. Aita and K. Ikeda, Chem. Pharm. Bull., 15 (1967) 1621.

    CAS  Google Scholar 

  3. P. J. O’Dowd and O. I. Corrigan, Int. J. Pharm., 176 (1999) 231.

    Article  CAS  Google Scholar 

  4. M. Sekiya, T. Yoshino, H. Tanaka and Y. Ishido, Bull. Chem. Soc. Jpn., 46 (1973) 556.

    Article  CAS  Google Scholar 

  5. S. L. Childs, G. P. Stahly and A. Park, Mol. Pharm., 4 (2007) 323.

    Article  CAS  Google Scholar 

  6. C. H. Koo, H. S. Shin and S. S. Oh, J. Korean Chem. Soc., 22 (1978) 86.

    CAS  Google Scholar 

  7. J. Madarász, P. Bombicz, K. Jármi, M. Bán, G. Pokol and S. Gál, J. Therm. Anal. Cal., 69 (2002) 281.

    Article  Google Scholar 

  8. P. Bombicz, J. Madarász, M. Bán, M. Czugler and A. Kálmán, Acta Crystallogr., (2002) A58(Suppl.) C312.

    Google Scholar 

  9. Cambridge Structural Database (CSD), F. H. Allen and W. D. S. Motherwell, Acta Crystallogr., B58 (2002) 407.

    CAS  Google Scholar 

  10. M. Bán, J. Madarász, P. Bombicz, G. Pokol and S. Gál, Thermochim. Acta, 420 (2004) 105.

    Article  Google Scholar 

  11. J. Nishijo, K. Ohno, K. Nishimura, M. Hukuda and H. Ishimura, Chem. Pharm. Bull., 30 (1982) 391.

    CAS  Google Scholar 

  12. J. Nishijo, H. Furukawa and M. Nakano, Yakugaku Zasshi, 100 (1980) 493 (Jap.).

    CAS  Google Scholar 

  13. E. Shefter, J. Pharm. Sci., 58 (1969) 710.

    Article  CAS  Google Scholar 

  14. A. V. Trask, W. D. S. Motherwell and W. Jones, Int. J. Pharm., 320 (2006) 114.

    Article  CAS  Google Scholar 

  15. J. Nishijo and F. Takenaka, Yakugaku Zasshi, 103 (1983) 819 (Jap.).

    CAS  Google Scholar 

  16. Z. Wang and L. Wei, Acta Cryst., E63 (2007) 1681.

    Google Scholar 

  17. T. Friščić, L. Fábián, J. C. Burley, W. Jones and W. D. S. Motherwell, Chem. Commun., (2006) 5009.

  18. D. Braga, S. L. Giaffreda, M. Curzi, L. Maini, M. Polito and F. Grepioni, J. Therm. Anal. Cal., 90 (2007) 545.

    Article  Google Scholar 

  19. T. Friščić, L. Fábián, J. C. Burley, D. G. Reid, M. J. Duer and W. Jones, Chem. Commun., (2008) 1644.

  20. G. M. Sheldrick, SHELXS-97 Program for Crystal Structures Solution, University of Göttingen, Göttingen 1997.

    Google Scholar 

  21. G. M. Sheldrick, SHELXL-97 Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen 1997.

    Google Scholar 

  22. CRC Handbook of Chemistry and Physics, Eds. R. C. Weast, M. J. Astle and W. H. Beyer, CRC Press Inc. 1985.

  23. A. L. Spek. J. Appl. Cryst., 36 (2003) 7.

    Article  CAS  Google Scholar 

  24. L. J. Barbour, J. Supramol. Chem., 1 (2001) 189.

    Article  CAS  Google Scholar 

  25. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, J. Appl. Cryst., 39 (2006) 453.

    Article  CAS  Google Scholar 

  26. NIST, Standard Reference Database, No. 69, June 2005 Release, http://webbook.nist.gov/chemistry/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margit Bán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bán, M., Bombicz, P. & Madarász, J. Thermal stability and structure of a new co-crystal of theophylline formed with phthalic acid. J Therm Anal Calorim 95, 895–901 (2009). https://doi.org/10.1007/s10973-007-8902-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8902-1

Keywords

Navigation