Skip to main content
Log in

A brief comparison of structural and magnetic properties of bismuth ferrite prepared using hydrothermal and sol–gel synthesis methods

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A succinct comparison of bismuth ferrite samples prepared using hydrothermal and sol–gel synthesis routes on structural and magnetic behavior is reported. X-ray diffraction studies confirm rhombohedral structure with the presence of an additional impurity phase and is found to be higher for the sol–gel method prepared sample than in comparison with the hydrothermal method. Distinguishable grains were obtained in hydrothermally prepared samples, which might be attributed to low levels of bismuth loss during the synthesis. Fourier transform infrared spectroscopy confirms the presence of oxygen-metal ion bonds at different peak positions for two synthesis methods. X-ray photoelectron spectroscopy shows the peaks pertaining to iron, bismuth, and oxygen ions at their respective binding energies. Higher saturation magnetization is observed for bismuth ferrite sample synthesized using hydrothermal methods and this clearly refer to the higher contribution of the iron ions than those of sol–gel prepared ones.

Graphical Abstract

Highlights

  • A well-defined structure with uniform distribution of grains is obtained for bismuth ferrite samples synthesized by hydrothermal method.

  • Additional phases were observed for sol–gel prepared bismuth ferrites both in XRD and FTIR studies.

  • Clear distinguishable grains were noticed in hydrothermally prepared samples.

  • XPS analysis confirms the presence of constituent elements in the compound.

  • Enhanced magnetic properties were noticed in hydrothermal synthesized bismuth ferrite samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kharbanda S, Dhanda N, Sun ACA, Thakur A, Thakur P (2023) Multiferroic perovskite bismuth ferrite nanostructures: a review on synthesis and applications. J Magn Magn Mater 572:170569, https://www.sciencedirect.com/science/article/pii/S0304885323002184

    Article  CAS  Google Scholar 

  2. Kar BS, Goswami MN, Jana PC (2021) Effects of lanthanum dopants on dielectric and multiferroic properties of BiFeO3–BaTiO3 ceramics. J Alloy Compd 861:157960. https://doi.org/10.1016/j.jallcom.2020.157960

    Article  CAS  Google Scholar 

  3. Dutta DP, Mandal BP, Naik R, Lawes G, Tyagi AK (2013) Magnetic, ferroelectric, and magnetocapacitive properties of sonochemically synthesized Sc-doped BiFeO3 nanoparticles. J Phys Chem C 117:2382

    Article  CAS  Google Scholar 

  4. Qian FZ, Jiang JS, Jiang DM, Zhang WG, Liu JH (2010) Multiferroic properties of Bi0.8Dy0.2−xLaxFeO3 nanoparticles. J Phys D Appl Phys 43:025403

    Article  ADS  Google Scholar 

  5. Reetu A, Agarwal S, Ashima S (2011) Rietveld analysis, dielectric and magnetic properties of Sr and Ti codoped BiFeO3 multiferroic. J Appl Phys 110:073909

    Article  ADS  Google Scholar 

  6. Lan C, Jiang Y, Yang S (2011) Magnetic properties of La and (La, Zr) doped BiFeO3 ceramics. J Mater Sci 46:734

    Article  ADS  CAS  Google Scholar 

  7. Sati PC, Arora M, Chauhan S, Kumar M, Chhoker S (2014) Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics. J Phys Chem Solids 75:105–108. https://doi.org/10.1016/j.jpcs.2013.09.003

    Article  ADS  CAS  Google Scholar 

  8. Rhaman MM, Matin MA, Hossain MN, Mozahid FA, Hakim MA, Islam MF (2019) Bandgap engineering of cobalt-doped bismuth ferrite nanoparticles for photovoltaic applications. Bull Mater Sci 42 (4), https://doi.org/10.1007/s12034-019-1871-8

  9. Lin JW, Tite T, Tang YH, Lue CS, Chang YM, Lin JG (2012) Correlation of spin and structure in doped bismuth ferrite nanoparticles. J Appl Phys 111:07D910. https://doi.org/10.1063/1.3673814

    Article  CAS  Google Scholar 

  10. Zhang H, Kajiyoshi K (2010) Hydrothermal synthesis and size-dependent properties of multiferroic bismuth ferrite crystallites. J Am Ceram 93:3842–3849. https://doi.org/10.1111/j.1551-2916.2010.03953.x

    Article  CAS  Google Scholar 

  11. Maleki H, Haselpour M, Fathi R (2018) The effect of calcination conditions on structural and magnetic behavior of bismuth ferrite synthesized by co-precipitation method. J Mater Sci Mater Electron 29:4320–4326. https://doi.org/10.1007/s10854-017-8379-z

    Article  CAS  Google Scholar 

  12. Manzoor A, Afzal AM, Umair M, Ali A, Rizwan M, Yaqoob MZ (2015) Synthesis and characterization of bismuth ferrite (BiFeO3) nanoparticles by solution evaporation method. J Magn Magn Mater 393:269–272. https://doi.org/10.1016/j.jmmm.2015.05.066

    Article  ADS  CAS  Google Scholar 

  13. Komarneni S, Menon VC, Li QH, Roy R, Ainger F (1996) Microwave-hydrothermal processing of BiFeO3 and CsAl2PO6. J Am Ceram Soc 79:1409. https://doi.org/10.1111/j.1151-2916.1996.tb08605.x

    Article  CAS  Google Scholar 

  14. Afzal AM, Umair M, Dastgeer G, Rizwan M, Yaqoob MZ, Rashid R, Munir HS (2016) Effect of O-vacancies on magnetic properties of bismuth ferrite nanoparticles by solution evaporation method. J Magn Magn Mater 399:77–80. https://doi.org/10.1016/j.jmmm.2015.09.062

    Article  ADS  CAS  Google Scholar 

  15. Fischer P, Polemska M, Sosnowska I, Szyma´nski M (1980) Temperature dependence of the crystal and magnetic structures of BiFeO3. J Phys C 13:1931. https://doi.org/10.1088/0022-3719/13/10/012

    Article  ADS  CAS  Google Scholar 

  16. Mhamad SA, Ali AA, Mohtar SS, Aziz F, Aziz M, Jaafar J, Yusof N, Salleh WNW, Ismail AF, Chandren S(2022) Synthesis of bismuth ferrite by sol–gel auto combustion method: impact of citric acid concentration on its physicochemical properties. Mater Chem Phys 282:125983. https://doi.org/10.1016/j.matchemphys.2022.125983

    Article  CAS  Google Scholar 

  17. Sosnowska I, Peterlin-Neumaier T, Streichele E (1982) Spiral magnetic ordering in bismuth ferrite. J Phys C 15:4835

    Article  ADS  CAS  Google Scholar 

  18. Ederer C, Spaldin NA(2005) Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite. Phys Rev B 71:224103. https://doi.org/10.1103/PhysRevB.71.224103

    Article  ADS  CAS  Google Scholar 

  19. Baettig P, Ederer C, Spaldin NA(2005) First-principles study of the multiferroics BiFeO3, Bi2FeCrO6, and BiCrO3: structure, polarization, and magnetic ordering temperature Phys Rev B 72:214105. https://doi.org/10.1103/PhysRevB.72.214105

    Article  ADS  CAS  Google Scholar 

  20. Rani S, Shekhar M, Kumar P et al. (2022) Study on quantitative Rietveld analysis of XRD patterns of different sizes of bismuth ferrite. Appl Phys A 128:1046. https://doi.org/10.1007/s00339-022-06171-y

    Article  ADS  CAS  Google Scholar 

  21. Ahmad Wani W, Kundu S, Ramaswamy K, Harihara Venkataraman B (2020) Optimizing phase formation of BiFeO3 and Mn-doped BiFeO3 nanoceramics via thermal treatment using citrate precursor method. SN Appl Sci 2:1969. https://doi.org/10.1007/s42452-020-03669-z

    Article  CAS  Google Scholar 

  22. Abushad M, Khan W, Naseem S, Husain S, Naseem M, Ansari A (2019) Influence of Mn doping on microstructure, optical, dielectric and magnetic properties of BiFeO3 nanoceramics synthesized via sol–gel method. Ceram Int 45(6):7437. https://doi.org/10.1016/j.ceramint.2019.01.035

    Article  CAS  Google Scholar 

  23. Carranza-Ceils D, Cardona-Rodriguez A, Narvaez J, Moscoso-Londono O, Muraca D, Knobel M, Ornelas-Soto N, Reiber A, Gabriel Ramirez J (2019) Control of multiferroic properties in BiFeO3 nanoparticles. Sci Rep 9:3182. https://doi.org/10.1038/s41598-019-39517-3

    Article  ADS  CAS  Google Scholar 

  24. Chen C, Cheng J, Yu S, Che L, Meng Z (2006) Hydrothermal synthesis of perovskite bismuth ferrite crystallites. J Cryst Growth 291:135–139. https://doi.org/10.1016/j.jcrysgro.2006.02.048

    Article  ADS  CAS  Google Scholar 

  25. Chen XZ, Qiu ZC, Zhou JP, Zhu G, Bian XB, Liu P (2011) Large-scale growth and shape evolution of bismuth ferrite particles with a hydrothermal method. Mater Chem Phys 126:560–567. https://doi.org/10.1016/j.matchemphys.2011.01.027

    Article  CAS  Google Scholar 

  26. M.Nadeem W, Khan S, Khan et al. (2020) “Structural, optical and enhanced multiferroic properties of La/Cr co-substituted BiFeO3 nanostructures. J Mater Sci Mater Electron 31:11177–11194. https://doi.org/10.1007/s10854-020-03666-3

    Article  CAS  Google Scholar 

  27. Chen Z, Li Y, Wuand Y, Hu J (2012) Hydrothermal synthesis and mechanism and property study of La-doped BiFeO3 crystallites. J Mater Sci Mater Electron 23:1402–1408. https://doi.org/10.1007/s10854-011-0605-5

    Article  CAS  Google Scholar 

  28. Shi M, Luo L, Dai J et al. (2020) The comparative study of two kinds of β-Bi2O3/TiO2 binary composite and their removal of 17ɑ-ethynylestradiol. Environ Sci Pollut Res 27:24692–24701. https://doi.org/10.1007/s11356-019-06348-8

    Article  CAS  Google Scholar 

  29. Sobhanardakani S, Jafari AA, Zandipak R, Meidanchi A(2018) Removal of heavy metal (Hg (II) and Cr (VI)) ions from aqueous solutions using Fe2O3@ SiO2 thin films as a novel adsorbent Process Saf Environ Prot 120:348–357. https://doi.org/10.1016/j.psep.2018.10.002

    Article  CAS  Google Scholar 

  30. Sansom G, Rattanakam R, Jettanasen J (2022) Effects of scaling up on the phase evolution of microcrystalline bismuth ferrite during hydrothermal process. e-J Surf Sci Nanotechnol 20:85–89. https://doi.org/10.1380/ejssnt.2022-014

    Article  CAS  Google Scholar 

  31. Gomez-Iriarte GA, Pentón-Madrigal A, de Oliveira LAS, Sinnecker JP (2022) XPS study in BiFeO3 surface modified by argon etching. Materials 15:4285. https://doi.org/10.3390/ma15124285

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee YH, Wu JM, Chen YC, Lu YH, Lin HN (2005) Surface chemistry and nanoscale characterizations of multiferroic BiFeO3 thin films. Electrochem Solid State Lett 8:F43

    Article  CAS  Google Scholar 

  33. Wang YP, Zhou L, Zhang MF, Chen XY, Liu JM, Liu ZG (2004) Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl Phys Lett 84:1731. https://doi.org/10.1063/1.1667612

    Article  ADS  CAS  Google Scholar 

  34. Mandal S, Ghosh CK, Sarkar D, Maiti UN, Chattopadhyay KK (2010) X-ray photoelectron spectroscopic investigation on the elemental chemical shifts in multiferroic BiFeO3 and its valence band structure. Solid State Sci 12:1803. https://doi.org/10.1016/j.solidstatesciences.2010.07.035

    Article  ADS  CAS  Google Scholar 

  35. Ianoş R, Lazău R, Borcănescu S, Băbuţă R (2015) Single-step combustion synthesis of YAlO3 powders. J Mater Sci 50:6382–6387. https://doi.org/10.1007/s10853-015-9190-y

    Article  ADS  CAS  Google Scholar 

  36. José O, David D, Inti Z, Humberto A, Israel B, Patricia S, Noel N (2013) Easy synthesis of high-purity BiFeO3 nanoparticles: new insights derived from the structural, optical, and magnetic characterization. Inorg Chem 52:10306–10317. https://doi.org/10.1021/ic400627c

    Article  CAS  Google Scholar 

  37. Lee SK, Choi GJ, Hwang UY, Koo KK, Park TJ (2003) Effect of molar ratio of KOH to Ti-isopropoxide on the formation of BaTiO3 powders by hydrothermal method. Mater Lett 57:2201. https://doi.org/10.1016/S0167-577X(02)01174-6

    Article  CAS  Google Scholar 

  38. Hu Y, Fei L, Zhang Y, Yuan J, Wang Y, Gu H (2010) Synthesis of bismuth ferrite nanoparticles via a wet chemical route at low temperature. J Nanomater 797639:Article 27. https://doi.org/10.1155/2011/797639. p. 6

    Article  CAS  Google Scholar 

  39. Agarwal A, Aghamkar P, Lal B (2017) Structural and multiferroic properties of barium substituted bismuth ferrite nanocrystallites prepared by sol–gel method. J Magn Magn Mater, 426:800–805. https://doi.org/10.1016/j.jmmm.2016.09.103

    Article  ADS  CAS  Google Scholar 

  40. Das R, Mandal K (2012) Magnetic, ferroelectric and magnetoelectric properties of Ba-doped BiFeO3. J Magn Magn Mater, 324:1913–1918. https://doi.org/10.1016/j.jmmm.2012.01.022

    Article  ADS  CAS  Google Scholar 

  41. Zavaliche F, Zhao T, Zheng H, Straub F, Cruz MP, Yang PL, Hao D, Ramesh R (2007) Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett 7:1586–1590. https://doi.org/10.1021/nl070465o

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Pradhan AK, Kai Zhang D, Hunter JB, Dadson GBL (2005) Magnetic and electrical properties of single-phase multiferroic BiFeO3. J Appl Phys 97:093903. https://doi.org/10.1063/1.1881775

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to UGC-NRC, School of Physics, University of Hyderabad for providing FESEM facilities. The authors are also thankful to CFRD, Osmania University for providing the Magnetic measurements (VSM) and X-ray photoelectron spectroscopy (XPS) facilities. We also thank Dr. Someshwar Pola, Associate Professor, Department of Chemistry for his valuable insights pertaining to XPS and FTIR.

Author information

Authors and Affiliations

Authors

Contributions

Y.K.L.: Conceptualization, Methodology, Writing—original draft, Supervision, Formal analysis, Methodology, Writing—review & editing; S.B.: Conceptualization, Methodology, Writing—original draft, Validation, Methodology, Formal analysis, Writing—review & editing; V.D.: Data discussion, M.V.N.: Data Discussion and M.R.: Data curation.

Corresponding authors

Correspondence to S. Bharadwaj or Y. Kalyana Lakshmi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharadwaj, S., Lakshmi, Y.K., Dhand, V. et al. A brief comparison of structural and magnetic properties of bismuth ferrite prepared using hydrothermal and sol–gel synthesis methods. J Sol-Gel Sci Technol 109, 810–816 (2024). https://doi.org/10.1007/s10971-024-06316-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-024-06316-w

Keywords

Navigation