Skip to main content
Log in

Strong spin-ferromagnetic order and active dyes-depollution performance of CuO semiconductor: Gd and Gd/Mn dopants

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, new dilute magnetic semiconductor compositions and broad spectrum photocatalysts based on Gd doped and (Gd, Mn) codoped CuO were synthesized by adapted sol gel method. The analyzed XRD peaks were completely indexed to the crystallographic planes of monoclinic copper oxide (CuO) structure. The effectual substitution of Cu2+-sites by Gd and (Gd, Mn) ions was verified from the expansion of the unit cell and shift of the XRD peaks. The inclusion of Gd and (Gd, Mn) ions move the band gap energy of pure CuO (1.41 eV, λ = 879 nm) to low energy region with measured values of 1.3 eV (λ = 953 nm) and 1.26 eV (λ = 984 nm), respectively. The morphological analysis illustrates that the existence of Gd and Mn ions enhances the reduction of the grains size of CuO with more distribution of fine particles. The room temperature ferromagnetic order was impressively improved after incorporation of (Gd, Mn) ions into the lattice of CuO. Herein, Cu0.96Gd0.02Mn0.02O composition exhibits a high saturation magnetization of 1.21 emu/g while the coercivity and remanence values were 156 Oe and 0.15 emu/g, respectively. On the other hand, Cu0.96Gd0.02Mn0.02O as a photocatalyst has large efficiencies for removal of brilliant green and Congo red under normal solar energy and Xenon photoreactor radiation. The measured photodegradation efficiency of Cu0.96Gd0.02Mn0.02O catalyst was 96% and 91% during 70 min with strong stability for 4 series and high mineralization of both dyes to CO2 and H2O. The obtained results highlight that Cu0.96Gd0.02Mn0.02O composition possesses dual-functions operation linked to spin-electronic devices and photocatalysis applications.

Graphical abstract

Highlights

  • New compositions composed of Gd-doped and (Gd, Mn) codoped CuO.

  • Cu0.96Gd0.02Mn0.02O composition exhibits high room temperature ferromagnetism.

  • Cu0.96Gd0.02Mn0.02O has a remarkable photodegradation for brilliant green and Congo red.

  • Spin-electronic devices and photocatalysis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data are existing in the main paper.

References

  1. Si R, Li Y, Tian J, Tan C, Chen S, Lei M, Guo X, Zhang S (2023) The stability of SnO2 and In2O3 gas sensors to water under temperature modulation mode. Sens Actuators B Chem 393:134222. https://doi.org/10.1016/j.snb.2023.134222

    Article  CAS  Google Scholar 

  2. Deka S (2023) Nanostructured mixed transition metal oxide spinels for supercapacitor applications. Dalton Trans 52:839–856. https://doi.org/10.1039/D2DT02733J

    Article  CAS  PubMed  Google Scholar 

  3. Lei Z, Lee JM, Singh G, Sathish CI, Chu X, Al-Muhtaseb AH, Vinu A, Yi J (2021) Recent advances of layered-transition metal oxides for energy-related applications. Energy Stor Mater 36:514–550. https://doi.org/10.1016/j.ensm.2021.01.004

    Article  Google Scholar 

  4. Saha S, Ali MR, Khaleque MA, Bacchu MS, Aly MAS, Khan MZH (2023) Metal oxide nanocarrier for targeted drug delivery towards the treatment of global infectious diseases: a review. J Drug Deliv Sci Technol 86:104728. https://doi.org/10.1016/j.jddst.2023.104728

    Article  CAS  Google Scholar 

  5. Yakout SM (2020) Spintronics: Future technology for new data storage and communication devices. J Supercond Nov Magn 33:2557–2580. https://doi.org/10.1007/s10948-020-05545-8

    Article  CAS  Google Scholar 

  6. Geldasa FT, Kebede MA, Shura MW, Hone FG (2023) Experimental and computational study of metal oxide nanoparticles for the photocatalytic degradation of organic pollutants: a review. RSC Adv 13:18404–18442. https://doi.org/10.1039/D3RA01505J

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ayodhya D, Veerabhadram G (2018) A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection. Mater Today Energy 9:83–113. https://doi.org/10.1016/j.mtener.2018.05.007

    Article  Google Scholar 

  8. Nazri MKHM, Sapawe N (2020) A short review on photocatalytic toward dye degradation. Mater Today Proc 31(2020):A42–A47. https://doi.org/10.1016/j.matpr.2020.10.967

    Article  CAS  Google Scholar 

  9. Basavaraj N, Sekar A, Yadav R (2021) Review on green carbon dot-based materials for the photocatalytic degradation of dyes: fundamentals and future perspective. Mater Adv 2:7559–7582. https://doi.org/10.1039/D1MA00773D

    Article  CAS  Google Scholar 

  10. Darabdhara J, Roy S, Ahmaruzzaman MD (2023) Efficient photocatalytic degradation of an organic dye by the fabrication of a novel ternary composite based on zeolitic imidazolate framework via a facile in-situ synthetic approach. Inorg Chem Commun 152:110694. https://doi.org/10.1016/j.inoche.2023.110694

    Article  CAS  Google Scholar 

  11. Ullah R, Naeemullah, Tuzen M (2023) Photocatalytic removal of organic dyes by titanium doped alumina nanocomposites: Using multivariate factorial and kinetics models. J Mol Struct 1285:135509. https://doi.org/10.1016/j.molstruc.2023.135509

    Article  CAS  Google Scholar 

  12. Gade R, Ahemed J, Yanapu KL, Abate SY, Tao Y-T, Pola S (2018) Photodegradation of organic dyes and industrial wastewater in the presence of layer-type perovskite materials under visible light irradiation. J Environ Chem Eng 6:4504–4513. https://doi.org/10.1016/j.jece.2018.06.057

    Article  CAS  Google Scholar 

  13. Lan J, Wang Y, Huang B, Xiao Z, Wu P (2021) Application of polyoxometalates in photocatalytic degradation of organic pollutants. Nanoscale Adv 3:4646–4658. https://doi.org/10.1039/D1NA00408E

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pérez-Álvarez DT, Brown J, Elgohary EA, Mohamed YMA, El Nazer HA, Davies P, Stafford J (2022) Challenges surrounding nanosheets and their application to solar-driven photocatalytic water treatment. Mater Adv 3:4103–4131. https://doi.org/10.1039/D2MA00276K

    Article  Google Scholar 

  15. Nezamzadeh-Ejhieh A, Salimi Z (2011) Solar photocatalytic degradation of o-phenylenediamine by heterogeneous CuO/X zeolite catalyst. Desalination 280:281–287. https://doi.org/10.1016/j.desal.2011.07.021

    Article  CAS  Google Scholar 

  16. Zhu C, Yao H, Le S, Yin Y, Chen C, Xu H, Wang S, Duan X (2022) S-scheme photocatalysis induced by ultrathin TiO2(B) nanosheets-anchored hierarchical In2S3 spheres for boosted photocatalytic activity. Compos B Eng 242:110082. https://doi.org/10.1016/j.compositesb.2022.110082

    Article  CAS  Google Scholar 

  17. Moriomoto T, Oka R, Minagawa K, Masui T (2022) Novel near-infrared reflective black inorganic pigment based on cerium vanadate. RSC Adv 12:16570–16575. https://doi.org/10.1039/D2RA02483G

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu J, Shen J, Jiang H, Yu X, Qureshi WA, Maouche C, Gao J, Yang J, Liu Q (2023) Progress and challenges in full spectrum photocatalysts: Mechanism and photocatalytic applications. J Ind Eng Chem 119:112–129. https://doi.org/10.1016/j.jiec.2022.11.057

    Article  CAS  Google Scholar 

  19. Ullah S, Ferreira-Neto EP, Hazra C, Parveen R, Rojas-Mantilla HD, Calegaro ML, Serge-Correales YE, Rodrigues-Filho UP, Ribeiro SJL (2019) Broad spectrum photocatalytic system based on BiVO4 and NaYbF4:Tm3+ upconversion particles for environmental remediation under UV-vis-NIR illumination. Appl Catal B 243:121–135. https://doi.org/10.1016/j.apcatb.2018.09.091

    Article  CAS  Google Scholar 

  20. Motora KG, Wu C-M (2020) Magnetically separable highly efficient full-spectrum light-driven WO2.72/Fe3O4 nanocomposites for photocatalytic reduction of carcinogenic chromium (VI) and organic dye degradation. J Taiwan Inst Chem Eng 117:123–132. https://doi.org/10.1016/j.jtice.2020.12.006

    Article  CAS  Google Scholar 

  21. Shen J-H, Tang Y-H, Jiang Z-W, Liao D-Q, Horng J-J (2021) Optimized preparation and characterization of Co-N codoped TiO2 with enhanced visible light activity: An insight into effect of dopants on surface redox reactions of photogenerated charge carriers for hydroxyl radical formation. J Alloy Compd 862:158697. https://doi.org/10.1016/j.jallcom.2021.158697

    Article  CAS  Google Scholar 

  22. Yu F, Wang W, Li Y, Du M, Liu F, Liang D (2023) Ultralow Fe doping induced high photocatalytic activity toward ciprofloxacin degradation and CO2 reduction. J Mol Struct 1273:134344. https://doi.org/10.1016/j.molstruc.2022.134344

    Article  CAS  Google Scholar 

  23. Hou L, Zhang C, Li L, Du C, Li X, Kang X-F, Chen W (2018) CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: Morphology and surface structure effects on the sensing performance. Talanta 188:41–49. https://doi.org/10.1016/j.talanta.2018.05.059

    Article  CAS  PubMed  Google Scholar 

  24. Chauhan M, Sharma B, Kumar R, Chaudhary GR, Hassan AA, Kumar S (2019) Green synthesis of CuO nanomaterials and their proficient use for organic waste removal and antimicrobial application. Environ Res 168:85–95. https://doi.org/10.1016/j.envres.2018.09.024

    Article  CAS  PubMed  Google Scholar 

  25. Kaur M, Tovstolytkin A, Lotey GS (2018) Magnetoelectric coupling in CuO nanoparticles for spintronics applications. Electron Mater Lett 14:370–375. https://doi.org/10.1007/s13391-018-0026-1

    Article  ADS  CAS  Google Scholar 

  26. Dubal DP, Gund GS, Lokhande CD, Holze R (2013) CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition. Mater Res Bull 48:923–928. https://doi.org/10.1016/j.materresbull.2012.11.081

    Article  CAS  Google Scholar 

  27. Baste Y, Jadhav V, Roy A, Alghamdi S, Abbas M, Algethami JS, Almehmadi M, Allahyani M, Verma D, Yadav KK, Jeon BH, Park HK (2023) Polyol synthesis of Ag-doped copper oxide nanoparticles as a methylene blue-degrading agent. Catalysts 13:1143. https://doi.org/10.3390/catal13071143

    Article  CAS  Google Scholar 

  28. Uma HB, Kumar MSV, Ananda S (2022) Semiconductor-assisted photodegradation of textile dye, photo-voltaic and antibacterial property of electrochemically synthesized Sr-doped CuO nano photocatalysts. J Mol Struct 1264:133110. https://doi.org/10.1016/j.molstruc.2022.133110

    Article  CAS  Google Scholar 

  29. Jaihindh DP, Anand P, Chen RS, Yu WY, Wong MS, Fu YP (2023) Cl-doped CuO for electrochemical hydrogen evolution reaction and tetracycline photocatalytic degradation. J Environ Chem Eng 11:109852. https://doi.org/10.1016/j.jece.2023.109852

    Article  CAS  Google Scholar 

  30. Iqbal M, Thebo AA, Shah AH, Iqbal A, Thebo KH, Phulpoto S, Mohsin MA (2017) Influence of Mn-doping on the photocatalytic and solar cell efficiency of CuO nanowires. Inorg Chem Commun 76:71–76. https://doi.org/10.1016/j.inoche.2016.11.023

    Article  CAS  Google Scholar 

  31. Phutanon N, Pisitsak P, Manuspiya H, Ummartyotin S (2018) Synthesis of three-dimensional hierarchical CuO flower-like architecture and its photocatalytic activity for rhodamine b degradation. J Sci Adv Mater Devices 3:310–316. https://doi.org/10.1016/j.jsamd.2018.05.001

    Article  Google Scholar 

  32. Jamal M, Nishat SS, Sharif A (2021) Effects of transition metal (Fe, Co & Ni) doping on structural, electronic and optical properties of CuO: DFT + U study. Chem Phys 545:111160. https://doi.org/10.1016/j.chemphys.2021.111160

    Article  CAS  Google Scholar 

  33. Ayed RB, Ajili M, Piñeiro Y, Rivas J, Kamoun NT (2020) First investigation on (Ni, Co) co-doping effects on the physical properties of Fe2O3 thin films for optoelectronic applications. Optik 213:164645. https://doi.org/10.1016/j.ijleo.2020.164645

    Article  ADS  CAS  Google Scholar 

  34. Siriwong C, Wetchakun N, Inceesungvorn B, Channei D, Samerjai T, Phanichphant S (2012) Doped-metal oxide nanoparticles for use as photocatalysts. Prog Cryst Growth Charact Mater 58:145–163. https://doi.org/10.1016/j.pcrysgrow.2012.02.004

    Article  CAS  Google Scholar 

  35. Asl HZ, Rozati SM (2017) Effects of HCl and methanol in the precursor on physical properties of spray-deposited nanostructured CuO thin films for solar applications. J Electron Mater 46:5020–5027. https://doi.org/10.1007/s11664-017-5510-0

    Article  ADS  CAS  Google Scholar 

  36. Jana S, Das S, Das NS, Chattopadhyay KK (2010) CuO nanostructures on copper foil by a simple wet chemical route at room temperature. Mater Res Bull 45:693–698. https://doi.org/10.1016/j.materresbull.2010.02.014

    Article  CAS  Google Scholar 

  37. Singh SJ, Chinnamuthu P (2021) Highly efficient natural-sunlight-driven photodegradation of organic dyes with combustion derived Ce-doped CuO nanoparticles. Colloids Surf A Physicochem Eng 625:126864. https://doi.org/10.1016/j.colsurfa.2021.126864

    Article  CAS  Google Scholar 

  38. Siddiqui H, Shrivastava M, Parra MR, Pandey P, Ayaz S, Qureshi MS (2018) The effect of La3+ ion doping on the crystallographic, optical and electronic properties of CuO nanorods. Mater Lett 229:225–228. https://doi.org/10.1016/j.matlet.2018.07.029

    Article  CAS  Google Scholar 

  39. Gao D, Yang G, Li J, Zhang J, Zhang J, Xue D (2010) Room-temperature ferromagnetism of flowerlike CuO nanostructures. J Phys Chem C 114:18347–18351. https://doi.org/10.1021/jp106015t

    Article  CAS  Google Scholar 

  40. Chandrasekar M, Subash M, Logambal S, Udhayakumar G, Uthrakumar R, Inmozhi C, Al-Onazi WA, Al-Mohaimeed AMA, Chen T, Kanimozhi K (2022) Synthesis and characterization studies of pure and Ni doped CuO nanoparticles by hydrothermal method. J King Saud Univ Sci 34:101831. https://doi.org/10.1016/j.jksus.2022.101831

    Article  Google Scholar 

  41. Lu P, Wu P, Wang J, Ma X (2019) Effect of structure distortion and copper vacancy on ferromagnetism in hydrothermally synthesized CuO with aliovalent Cr3+ doping. Chem Phys Lett 730(2019):297–301. https://doi.org/10.1016/j.cplett.2019.06.029

    Article  ADS  CAS  Google Scholar 

  42. Sellaiyan S, Devi LV, Sako K, Uedono A, Sivaji K (2019) Effect of dopant concentration and annealing of Yttrium doped CuO nanocrystallites studied by positron annihilation spectroscopy. J Alloy Compd 788(2019):549–558. https://doi.org/10.1016/j.jallcom.2019.02.247

    Article  CAS  Google Scholar 

  43. Basith M, Vijaya JJ, Kennedy LJ, Bououdina M (2013) Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures. Phys E Low Dimens Syst Nanostruct 53:193–199. https://doi.org/10.1016/j.physe.2013.05.009

    Article  ADS  CAS  Google Scholar 

  44. Chuai M, Zhao Q, Yang T, Luo Y, Zhang M (2015) Synthesis and ferromagnetism study of Ce doped CuO dilute magnetic semiconductor. Mater Lett 161:205–207. https://doi.org/10.1016/j.matlet.2015.08.075

    Article  CAS  Google Scholar 

  45. Park YR, Kim KJ, Choi S, Lee JH, Lee HJ, Kim CS, Park JY (2007) Ferromagnetism in 57Fe-doped cupric oxide. Phys Stat Sol b 244:4578–4581. https://doi.org/10.1002/pssb.200777116

    Article  ADS  CAS  Google Scholar 

  46. Belghiti M, Tanji K, El Mersly L, Lamsayety I, Ouzaouit K, Faqir H, Benzakour I, Rafqah S, Outzourhit A (2022) Fast and non-selective photodegradation of basic yellow 28, malachite green, tetracycline, and sulfamethazine using a nanosized ZnO synthesized from zinc ore. React Kinet Mech Catal 135:2265–2278. https://doi.org/10.1007/s11144-022-02232-8

    Article  CAS  Google Scholar 

  47. Jiang G, Wei Z, Chen H, Du X, Li L, Liu Y, Huang Q, Chen W (2015) Preparation of novel carbon nanofibers with BiOBr and AgBr decoration for the photocatalytic degradation of rhodamine B. RSC Adv 5:30433–30437. https://doi.org/10.1039/C4RA17290F

    Article  ADS  CAS  Google Scholar 

  48. Koysuren O, Koysuren HN (2023) Application of CuO and its composite with polyaniline on the photocatalytic degradation of methylene blue and the Cr(VI) photoreduction under visible light. J Sol Gel Sci Technol 106:131–148. https://doi.org/10.1007/s10971-023-06049-2

    Article  CAS  Google Scholar 

  49. Degefu DM, Liao Z (2021) Photocatalytic degradation of volatile organic compounds using nanocomposite of P-type and N-type transition metal semiconductors. J Sol Gel Sci Technol 98:605–614. https://doi.org/10.1007/s10971-021-05532-y

    Article  CAS  Google Scholar 

  50. Demir B, Tüter M, Özkara-Aydınoğlu Ş (2022) Photocatalytic degradation of organic dyes under visible light on sol-gel derived M/ZnO (M=Cr, Mn, Sn, Fe, Ni, Cu, Co, Ba) catalysts. J Sol Gel Sci Technol 103:214–225. https://doi.org/10.1007/s10971-022-05827-8

    Article  CAS  Google Scholar 

Download references

Author contributions

All work was done by NJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Janene.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janene, N. Strong spin-ferromagnetic order and active dyes-depollution performance of CuO semiconductor: Gd and Gd/Mn dopants. J Sol-Gel Sci Technol 109, 543–554 (2024). https://doi.org/10.1007/s10971-023-06302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06302-8

Keywords

Navigation