Skip to main content
Log in

Green synthesis of nickel oxide hole transport layer via aloe vera extract-assisted sol-gel process

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In perovskite solar cells (PSCs), the instability concern and complex synthesis process of organic hole transport layers (HTL) have led researchers to focus on widely available inorganic NiOx as an effective alternative. Herein, an eco-friendly and cost-effective green synthesis method has been implemented to fabricate the NiOx thin film using aloe vera (AV) leaf extract as a complexing agent and the effect of different calcination temperatures (300 °C, 400 °C and 500 °C) on the film’s properties have been thoroughly studied. XRD analysis has shown improved crystallinity in the films that were calcined at higher temperatures. Both Raman spectroscopy and EDX analysis have revealed the presence of low carbon content in all deposited thin films. The film calcined at 300 °C has shown the most favorable morphology that has been confirmed from the FESEM images. The band gap of the films has been shifted from 3.83 eV to 3.73 eV as the calcination temperature increased. Upon electrical characterizations, the film calcined at 500 °C has demonstrated the highest hole mobility (20.3 cm²/Vs). The results from numerical simulation have indicated that the PSC employing the NiOx HTL calcined at 500 °C exhibits the highest PCE, Voc and FF values of 16.04%, 1.70 V and 67.35%, respectively, while the film calcined at 300 °C results the highest Jsc (14.95 mA/cm²).

Highlights

  • Green sol-gel synthesis of NiOx thin film with aloe vera extract.

  • Effect of calcination temperatures on optoelectronic properties.

  • Film fabricated at 300 °C shows the best morphology.

  • Numerical simulation with green synthesised NiOx HTL gives 16.04% efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Islam MA et al. (2023) Potential-induced performance degradation (PID) applied on a perovskite solar cell: exploring its effect on cell performance through numerical simulation. J Electr Mater 52(5):3205–3218

    Article  ADS  CAS  Google Scholar 

  2. Liu S et al. (2023) Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia Mater 15(1):27

    Article  ADS  Google Scholar 

  3. Valadi K et al. (2021) Metal oxide electron transport materials for perovskite solar cells: a review. Environ Chem Lett 19(3):2185–2207

    Article  CAS  Google Scholar 

  4. Cai X et al. (2023) A review for nickel oxide hole transport layer and its application in halide perovskite solar cells. Mater Today Sustainability 23:100438

    Article  Google Scholar 

  5. Bi C et al. (2015) Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat Commun 6(1):7747

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  6. Li S et al. (2021) A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Metals 40(10):2712–2729

    Article  CAS  Google Scholar 

  7. Liu T et al. (2016) Inverted perovskite solar cells: progresses and perspectives. Adv Energy Mater 6(17):1600457

    Article  ADS  Google Scholar 

  8. Wang Q et al. (2021) Recent progress of inorganic hole transport materials for efficient and stable perovskite solar cells. Nano Select 2(6):1055–1080

    Article  CAS  Google Scholar 

  9. Kim G-W et al. (2020) Hole transport materials in conventional structural (n–i–p) perovskite solar cells: from past to the future. Adv Energy Mater 10(8):1903403

    Article  CAS  Google Scholar 

  10. Arumugam GM et al. (2021) Inorganic hole transport layers in inverted perovskite solar cells: A review. Nano Select 2(6):1081–1116

    Article  CAS  Google Scholar 

  11. Sajid S et al. (2018) Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy 51:408–424

    Article  CAS  Google Scholar 

  12. You J et al. (2016) Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol 11(1):75–81

    Article  ADS  PubMed  Google Scholar 

  13. Khan F, Rezgui BD, Kim JH (2020) Analysis of PV cell parameters of solution processed Cu-doped nickel oxide hole transporting layer-based organic-inorganic perovskite solar cells. Solar Energy 209:226–234

    Article  ADS  CAS  Google Scholar 

  14. Liu Y et al. (2020) Solution-combustion-based nickel oxide hole transport layers via fuel regulation in inverted planar perovskite solar cells. J Mater Sci: Mater Electr 31(18):15225–15232

    CAS  Google Scholar 

  15. Di Girolamo D et al. (2020) Progress, highlights and perspectives on NiO in perovskite photovoltaics. Chem Sci 11(30):7746–7759

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kumar A, Singh S, Yadav A (2021) Recent progress in inverted perovskite solar cells employing nickel oxide (NiOx) as a hole transport materials. Mater Today: Proc 46:5827–5832

    CAS  Google Scholar 

  17. Salokhe PK et al. (2021) Study of physical properties of chemical bath deposited nickel oxide thin films. Mater Today: Proc 43:2810–2813

    CAS  Google Scholar 

  18. Sun Q-Z et al. (2020) A 9% efficiency of flexible Mo-foil-based Cu2ZnSn(S, Se)4 solar cells by improving CdS buffer layer and heterojunction interface. Chin Phys B 29(12):128801

    Article  ADS  CAS  Google Scholar 

  19. Kumar A, Singh S (2020) Advancement in inorganic hole transport materials for inverted perovskite solar cells. J Electr Mater 49(10):5840–5881

    Article  ADS  CAS  Google Scholar 

  20. Kim J et al. (2016) Solution-processed nickel oxide nanoparticles with NiOOH for hole injection layers of high-efficiency organic light-emitting diodes. Nanoscale 8(40):17608–17615

    Article  CAS  PubMed  Google Scholar 

  21. Pang S et al. (2019) Efficient NiOx hole transporting layer obtained by the oxidation of metal nickel film for perovskite solar cells. ACS Appl Energy Mater 2(7):4700–4707

    Article  CAS  Google Scholar 

  22. Dalavi DS et al. (2012) Efficient maximization of coloration by modification in morphology of electrodeposited NiO thin films prepared with different surfactants. J Solid State Electrochem 16(1):253–263

    Article  CAS  Google Scholar 

  23. Park H et al. (2021) Nickel oxide for perovskite photovoltaic cells. Adv Photonics Res 2(8):2000178

    Article  CAS  Google Scholar 

  24. Kim BG, Jang W, Wang DH (2018) Facile NiOx sol-gel synthesis depending on chain length of various solvents without catalyst for efficient hole charge transfer in perovskite solar cells. Polymers 10, https://doi.org/10.3390/polym10111227.

  25. Zhang Q, Sando D, Nagarajan V (2016) Chemical route derived bismuth ferrite thin films and nanomaterials. J Mater Chem C 4(19):4092–4124

    Article  CAS  Google Scholar 

  26. Matinise N et al. (2018) Green synthesis of cobalt (II, III) oxide nanoparticles using Moringa Oleifera natural extract as high electrochemical electrode for supercapacitors. AIP Conf Proc 1962(1):040005

    Article  Google Scholar 

  27. Al Jahdaly BA et al. (2022) Phytosynthesis of Co3O4 nanoparticles as the high energy storage material of an activated carbon/Co3O4 symmetric supercapacitor device with excellent cyclic stability based on a Na2SO4 aqueous electrolyte. ACS Omega 7(27):23673–23684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shaheen I et al. (2021) Facile ZnO-based nanomaterial and its fabrication as a supercapacitor electrode: synthesis, characterization and electrochemical studies. RSC Adv 11(38):23374–23384

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Selvanathan V et al. (2021) Phytochemical-assisted green synthesis of nickel oxide nanoparticles for application as electrocatalysts in oxygen evolution reaction. Catalysts 11, https://doi.org/10.3390/catal11121523.

  30. Ahmad W et al. (2022) A review on current trends in the green synthesis of nickel oxide nanoparticles, characterizations, and their applications. Environ Nanotechnol Monitoring Manag 18:100674

    Article  CAS  Google Scholar 

  31. Sabouri Z et al. (2021) Green-based bio-synthesis of nickel oxide nanoparticles in Arabic gum and examination of their cytotoxicity, photocatalytic and antibacterial effects. Green Chem Lett Rev 14(2):404–414

    Article  CAS  Google Scholar 

  32. Ramesh R et al. (2021) Investigation of structural and optical properties of NiO nanoparticles mediated by Plectranthus amboinicus leaf extract. Mater Today: Proc 36:268–272

    CAS  Google Scholar 

  33. Ünlü, B, 15 - Herbal medicine and common dermatologic diseases, in Herbal Medicines, M Sarwat and H Siddique, Editors. 2022, Academic Press. p. 329–345.

  34. Anju TR et al. (2021) Green synthesis of silver nanoparticles from Aloe vera leaf extract and its antimicrobial activity. Mater Today Proc 43:3956–3960

    Article  CAS  Google Scholar 

  35. Selvanathan V et al. (2023) Aloe vera extract mediated hydrothermal synthesis of rose-like copper iron sulfide for efficient oxygen evolution reaction. J Taiwan Inst Chem Eng 151:105131

    Article  CAS  Google Scholar 

  36. Sharma S, Kumar K (2021) Aloe-vera leaf extract as a green agent for the synthesis of CuO nanoparticles inactivating bacterial pathogens and dye. J Dispersion Sci Technol 42(13):1950–1962

    Article  CAS  Google Scholar 

  37. Sarkar DK et al. (2023) Phytochemical-assisted green synthesis of CuFeOx nano-rose electrocatalysts for oxygen evolution reaction in alkaline media. RSC Adv 13(28):19130–19139

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sarkar DK et al. (2023) Phytochemicals assisted green synthesis of copper oxide/cobalt oxide as efficient electrocatalyst for oxygen evolution reaction. Int J Hydrogen Energy 51:700–712

    Article  Google Scholar 

  39. Sarkar DK et al. (2023) A comprehensive study on RbGeI3 based inorganic perovskite solar cell using green synthesized CuCrO2 as hole conductor. J Photochem Photobiol A: Chem 439:114623

    Article  CAS  Google Scholar 

  40. Ariful Islam M et al. (2023) Metal organic framework derived NiOx nanoparticles for application as a hole transport layer in perovskite solar cells. RSC Adv 13(19):12781–12791

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khatoon S et al. (2023) A simulation study of all inorganic lead-free CsSnBr3 tin halide perovskite solar cell. Mater Today Proc

  42. Pindolia G, Shinde SM, Jha PK (2022) Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation. Solar Energy 236:802–821

    Article  ADS  CAS  Google Scholar 

  43. Bandeira M et al. (2020) Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chem Pharmacy 15:100223

    Article  Google Scholar 

  44. Gebretinsae, HG, et al. (2022) Effect of rotational speed on the structural, morphological, and optical properties of biosynthesized nickel oxide thin films for selective solar absorber nanocoatings. Energies 15, https://doi.org/10.3390/en15238960

  45. Wang XL et al. (2018) Thickness effect of nickel oxide thin films on associated solution-processed write-once-read-many-times memory devices. Appl Phys A 124(6):454

    Article  ADS  Google Scholar 

  46. Guo W, Hui KN, Hui KS (2013) High conductivity nickel oxide thin films by a facile sol–gel method. Mater Lett 92:291–295

    Article  CAS  Google Scholar 

  47. Kim JK (2019) PEG-assisted sol-gel synthesis of compact nickel oxide hole-selective layer with modified interfacial properties for organic solar cells. Polymers 11, https://doi.org/10.3390/polym11010120

  48. Kabir MH et al. (2019) Effect of annealing temperature on structural morphological and optical properties of spray pyrolized Al-doped ZnO thin films. J Phys Commun 3(10):105007

    Article  CAS  Google Scholar 

  49. Li M-C et al. (2022) Effect of annealing temperature on the optoelectronic properties and structure of NiO films. Ceramics Int 48(2):2820–2825

    Article  CAS  Google Scholar 

  50. Martínez-Gil M et al. (2017) Influence of annealing temperature on nickel oxide thin films grown by chemical bath deposition. Mater Sci Semiconductor Proc 72:37–45

    Article  Google Scholar 

  51. Salunkhe P, A V MA, Kekuda D (2020) Investigation on tailoring physical properties of Nickel Oxide thin films grown by dc magnetron sputtering. Mater Res Expr 7(1):016427

    Article  ADS  CAS  Google Scholar 

  52. Salunkhe P, A.V MA, Kekuda D (2021) Structural, spectroscopic and electrical properties of dc magnetron sputtered NiO thin films and an insight into different defect states. Appl Phys A 127(5):390

    Article  ADS  CAS  Google Scholar 

  53. Usha KS et al. (2016) Improved electrochromic performance of a radio frequency magnetron sputtered NiO thin film with high optical switching speed. RSC Adv 6(83):79668–79680

    Article  ADS  CAS  Google Scholar 

  54. Hammad AH et al. (2019) Influence the oxygen flow rate on the film thickness, structural, optical and photoluminescence behavior of DC sputtered NiOx thin films. Phys B: Condensed Matter 568:6–12

    Article  ADS  CAS  Google Scholar 

  55. Gowthami V et al. (2014) Structural and optical studies on nickel oxide thin film prepared by nebulizer spray technique. Phys B: Condensed Matter 452:1–6

    Article  ADS  CAS  Google Scholar 

  56. Tian Y et al. (2019) Effect of substrate temperature on the optical and electrical properties of nitrogen-doped NiO thin films. Coatings 9, https://doi.org/10.3390/coatings9100634

  57. Aswathy NR, Varghese J, Vinodkumar R (2020) Effect of annealing temperature on the structural, optical, magnetic and electrochemical properties of NiO thin films prepared by sol–gel spin coating. J Mater Sci Mater Electr 31(19):16634–16648

    Article  CAS  Google Scholar 

  58. Wright AM et al. (2013) Charge transfer and blue shifting of vibrational frequencies in a hydrogen bond acceptor. J Phys Chem A 117(26):5435–5446

    Article  CAS  PubMed  Google Scholar 

  59. Chan, YB, et al. (2022) Effect of calcination temperature on structural, morphological and optical properties of copper oxide nanostructures derived from Garcinia mangostana L. Leaf Extract. Nanomaterials 12, https://doi.org/10.3390/nano12203589

  60. Ahmed NM et al. (2019) The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results Phys 13:102159

    Article  Google Scholar 

  61. Sabeeh SH, Jassam RH (2018) The effect of annealing temperature and Al dopant on characterization of ZnO thin films prepared by sol-gel method. Results Phys 10:212–216

    Article  ADS  Google Scholar 

  62. Thirumoorthi M, Prakash JTJ (2016) A study of Tin doping effects on physical properties of CdO thin films prepared by sol–gel spin coating method. J Asian Ceramic Soc 4(1):39–45

    Article  Google Scholar 

  63. Welegergs GG et al. (2023) Electrodeposition of nanostructured copper oxide (CuO) coatings as spectrally solar selective absorber: Structural, optical and electrical properties. Infrared Phys Technol 133:104820

    Article  CAS  Google Scholar 

  64. Welegergs GG et al. (2021) Thickness dependent morphological, structural and optical properties of SS/CuO nanocoatings as selective solar absorber. Infrared Phys Technol 113:103619

    Article  CAS  Google Scholar 

  65. Akgul FA et al. (2014) Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater Chem Phys 147(3):987–995

    Article  CAS  Google Scholar 

  66. Zhang Y et al. (2010) Effect of annealing temperature on the structural and optical properties of ZnO thin films prepared by sol–gel method. Ionics 16(9):815–820

    Article  CAS  Google Scholar 

  67. Ivanova, T, et al. (2022) Nickel oxide films deposited by sol-gel method: Effect of annealing temperature on structural, optical, and electrical properties. Materials 15, https://doi.org/10.3390/ma15051742

  68. Nalage SR et al. (2012) Sol–gel synthesis of nickel oxide thin films and their characterization. Thin Solid Films 520(15):4835–4840

    Article  ADS  CAS  Google Scholar 

  69. Mahjabin, S, et al. (2022) Investigation of morphological, optical, and dielectric properties of RF sputtered WOx thin films for optoelectronic applications. Nanomaterials 12, https://doi.org/10.3390/nano12193467

  70. Jamal MS et al. (2019) Effects of growth temperature on the photovoltaic properties of RF sputtered undoped NiO thin films. Results Phys 14:102360

    Article  Google Scholar 

  71. Kumarasinghe PKK et al. (2017) Effect of post deposition heat treatment on microstructure parameters, optical constants and composition of thermally evaporated CdTe thin films. Mater Sci Semiconductor Proc 58:51–60

    Article  CAS  Google Scholar 

  72. Nehate SD et al. (2018) Work function extraction of indium tin oxide films from MOSFET devices. ECS J Solid State Sci Technol 7(3):P87

    Article  CAS  Google Scholar 

  73. Khadka DB et al. (2017) Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells. J Mater Chem C 5(34):8819–8827

    Article  CAS  Google Scholar 

  74. Casas GA et al. (2017) Analysis of the power conversion efficiency of perovskite solar cells with different materials as Hole-Transport Layer by numerical simulations. Superlattices Microstruct 107:136–143

    Article  ADS  CAS  Google Scholar 

  75. Shamna MS, Nithya KS, Sudheer KS (2020) Simulation and optimization of CH3NH3SnI3 based inverted perovskite solar cell with NiO as Hole transport material. Mater Today Proc 33:1246–1251

    Article  CAS  Google Scholar 

  76. Sharma GD et al. (2012) Photovoltaic properties of bulk heterojunction devices based on CuI-PVA as electron donor and PCBM and modified PCBM as electron acceptor. Mater Sci-Poland 30(1):10–16

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Universiti Kebangsaan Malaysia, Malaysia (UKM) for financial support through the SRF – APP MIMOS UKM grant (RS-2021-003). The authors also extend their appreciation to the Researchers Supporting Project number (RSPD2024R597), King Saud University, Riyadh, Saudi Arabia. We also gratefully acknowledge Dr Marc Burgelman, University of Gent, Belgium, for providing the SCAPS- 1D simulation software.

Author contributions

MdAI: Writing—Original Draft, Software, Investigation. VS: Conceptualization, Methodology, Writing—Reviewing and Editing. PC: Formal analysis, Software, Visualization. Md MH: Validation, Investigation. MM: Writing—Reviewing and Editing. IAA: Validation. MRK: Visualization. MAI: Visualization, Editing. TS: Resources. MdA: Supervision, Writing—Reviewing and Editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vidhya Selvanathan or Md. Akhtaruzzaman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.A., Selvanathan, V., Chelvanathan, P. et al. Green synthesis of nickel oxide hole transport layer via aloe vera extract-assisted sol-gel process. J Sol-Gel Sci Technol 109, 580–593 (2024). https://doi.org/10.1007/s10971-023-06296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06296-3

Keywords

Navigation