Skip to main content

Advertisement

Log in

Antimicrobial properties of polysiloxane/polyoxometallates

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocomposites based on Keggin-type polyoxometalate H5PV2Mo10O40 (POM) and organically modified silicate (Ormosil) were prepared by sol-gel processes. The physical properties of the Ormosil/POM composites were examined using FTIR, UV, SEM, TEM and XRD. These techniques indicated that the POM was bond to the Ormosil matrix after impregnation. The antibacterial effects of Ormosil/POM and the Ormosil+POM were assessed by the zone of inhibition, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). A higher POM proportion used in the Ormosil/POM yielded a stronger antimicrobial effect that was superior to Ormosil+POM. The excellent antibacterial performance of Ormosil/POM-10 compositean was discovered. Ormosil/POM composites were therefore believed to have great potential for use as an antibacterial material.

Graphical Abstract

This study used the sol-gel method to produce Ormosil/POM nanocomposites with antimicrobial effects, suitable for antimicrobial textiles.

Highlights

  • The POM was chemically bonded to the carrier to solve the problem of separation.

  • The original structural characteristics of Ormosil and POM remained unaffected.

  • The addition of more POM led to a stronger interaction force with SiO2.

  • A higher POM proportion used in the Ormosil/POM yielded a stronger antimicrobial effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rahighi R, Hosseini-Hosseinabad SM, Zeraati AS, Suwaileh W, Norouzi A, Panahi M, Gholipour S, Karaman C, Akhavan O, Khollari MAR (2022) Two-dimensional materials in enhancement of membrane-based lithium recovery from metallic-ions-rich wastewaters: a review. Desalination 543:116096

    Article  CAS  Google Scholar 

  2. Seidi F, Yazdi MK, Jouyandeh M, Habibzadeh S, Munir MT, Vahabi H, Bagheri B, Rabiee N, Zarrintaj P, Saeb M (2022) Green products from herbal medicine wastes by subcritical water treatment. J Hazard Mater 424:127294

    Article  Google Scholar 

  3. Mir SH, Nagahara LA, Thundat T, Mokarian-Tabari P, Furukawa H, Khosla A (2018) Review-organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J Electrochem Soc 165:B3137–B3156

    Article  CAS  Google Scholar 

  4. Niu B, Chen Y, Zhang L (2022) Organic–inorganic hybrid nanomaterials prepared via polymerization-induced self-assembly: recent developments and future opportunities. Jianbo Tan, Polym Chem 13:2554–2569

    Article  CAS  Google Scholar 

  5. Ikake H, Hara S, Shimizu S (2022) Skillful control of dispersion and 3D network structures: advances in functional organic–inorganic nano-hybrid materials prepared using the sol-gel method. Polymers 14:3247

    Article  CAS  Google Scholar 

  6. García-Martínez JM, Collar EP (2021) Organic-inorganic hybrid materials. Polymers 13:86

    Article  Google Scholar 

  7. Erigoni A, Diaz U (2021) Porous silica-based organic-inorganic hybrid catalysts: a review. Catalysts 11:79

    Article  CAS  Google Scholar 

  8. Carvalho APA, Soares BG, Livi S (2016) Organically modified silica (ORMOSIL) bearing imidazolium – based ionic liquid prepared by hydrolysis/co-condensation of silane precursors: synthesis, characterization and use in epoxy networks. Eur Polym J 83:311–322

    Article  CAS  Google Scholar 

  9. Odenwald C, Kickelbick G (2019) Additive-free continuous synthesis of silica and ORMOSIL micro- and nanoparticles applying a microjet reactor. J Sol Gel Sci Technol 89:343–353

    Article  CAS  Google Scholar 

  10. Misra A, Kozma K, Streb C, Nyman M (2020) Beyond charge balance: counter-cations in polyoxometalate. Chem Angew Chem Int Ed 59:1–18

    Google Scholar 

  11. Horn MR, Singh A, Alomari S, Goberna-Ferro´n S, Benages-Vilau R, Chodankar N, Motta N, Kostya (Ken) Ostrikov, MacLeod J, Sonar P, Gomez-Romero P, Dubal D (2021) Polyoxometalates (POMs): from Electroactive Clusters to Energy Materials. Energy Environ Sci 14:1652–1700

    Article  CAS  Google Scholar 

  12. Liu R, Streb C (2021) Polyoxometalate-Single Atom Catalysts (POM-SACs) in energy research and catalysis. Adv Energy Mater 11:2101120

    Article  CAS  Google Scholar 

  13. Maloul S, van den Borg M, Müller C, Zedler L, Mengele A, Gaissmaier D, Jacob T, Rau S, Dietzek-Ivanšić B, Streb C (2021) Multifunctional polyoxometalate-platforms for supramolecular lightdriven hydrogen evolution. Chemistry 27:1–8

    Google Scholar 

  14. Guo Y, Hu C (2007) Heterogeneous photocatalysis by solid polyoxometalates. J Mol Catal A Chem 262:136–148

    Article  CAS  Google Scholar 

  15. Guo Y, Hu C, Jiang S, Guo C, Yang Y, Wang E (2002) Heterogeneous photodegradation of aqueous hydroxy butanedioic acid by microporous polyoxometalates. Appl Catal B Environ 36:9–17

    Article  CAS  Google Scholar 

  16. Ghali M, Brahmi C, Benltifa M, Vaulot C, Airoudj A, Fioux P, Dumur F, Simonnet-Jégatf C, MorletSavary F, Jellali S, Bousselmi L, Lalevée J (2021) Characterization of polyoxometalate/polymer photo-composites: a toolbox for the photodegradation of organic pollutants. J Polym Sci 59:153–169

    Article  CAS  Google Scholar 

  17. Küçük A, Vural S, Kıvılcım N, Adıgüzel L, Köytepe S, Seçkin T (2020) Preparation of the copper-based polyoxometalate/polyurethane composites and their dielectric properties. Polym Polym Compos 28:473–483

    Google Scholar 

  18. Khalilpour H, Shafiee P, Darbandi A, Yusuf M, Mahmoudi S, Goudarzi ZM, Mirzamohammadi S (2021) Application of polyoxometalate-based composites for sensor systems: a review. Polym Polym Compos 3:129–139

    Google Scholar 

  19. Herrmann S, Ritchieb C, Streb C (2015) Polyoxometalate–conductive polymer composites for energy conversion, energy storage and nanostructured sensors. Dalton Trans 44:7092–7104

    Article  CAS  Google Scholar 

  20. Ayranci R, Torlak Y, Soganci T, Ak M (2018) Trilacunary Keggin type polyoxometalate-conducting polymer composites for amperometric glucose detection. J Electrochem Soc 165:B638–B643

    Article  CAS  Google Scholar 

  21. Czarnecka-Komorowska D, Sterzynski T (2018) Effect of polyhedral oligomeric silsesquioxane on the melting, structure, and mechanical behavior of polyoxymethylene. Polymers 10:203

    Article  Google Scholar 

  22. Zhang D, Liu T, An C, Liu H, Wu Q (2020) Preparation of vanadium-substituted polyoxometalate doped carbon nitride hybrid materials POM/g-C3N4 and their photocatalytic oxidation performance. Mater Lett 262:126954

    Article  CAS  Google Scholar 

  23. Zhang WY, Lu Y, Li Z, Wang Y, Sun XW, Wang Q, Zhang Z, Liu SX (2022) Incorporation of polyoxometalate-based acid–base pair into a sulfonated MIL-101 for achieving proton-conduction materials with high proton conductivity and high stability. Tungsten 4:130–137

    Article  Google Scholar 

  24. Chen X, Pan J, Fu J, Zhu X, Zhang C, Zhou L, Wang Y, Lv Z, Zhou Y, Han ST (2018) Polyoxometalates-modulated reduced graphene oxide flash memory with ambipolar trapping as bidirectional artificial synapse. Adv Electron Mater 4:1800444

    Article  Google Scholar 

  25. Bijelic A, Aureliano M, Rompel A (2018) The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectivest. Chem Commun 54:1153–1169

    Article  CAS  Google Scholar 

  26. Dutta T, Sarkar R, Pakhira B, Ghosh S, Sarkar R, Barui A, Sarkar S (2015) ROS generation by reduced graphene oxide (rGO) induced by visible light showing antibacterial activity: comparison with graphene oxide (GO). RSC Adv 5:80192–80195

    Article  CAS  Google Scholar 

  27. Jannesari M, Akhavan O, Hosseini HRM, Bakhshi B (2015) Graphene/CuO2 nanoshuttles with controllable release of oxygen nanobubbles promoting interruption of bacterial respiration. Langmuir 31:9155–9162

    Google Scholar 

  28. Tiwari CK, Baranov M, Neyman A, Neumann R, Weinstock IA (2020) Selective oxidation by H5[PV2Mo10O40] in a highly acidic medium. Inorg Chem 59:1945–11952

    Article  Google Scholar 

  29. Bijelic A, Aureliano M, Rompel A (2018) The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectivest. Chem Commun 54:1153

    Article  CAS  Google Scholar 

  30. Zhao M, Fang Y, Ma L, Zhu X, Jiang L, Li M, Han Q (2020) Synthesis, characterization and in vitro antibacterial mechanism study of two Keggin-type polyoxometalates. J Inorg Biochem 210:111131

    Article  CAS  Google Scholar 

  31. Hung WC, Wu KH, Lyu DY, Cheng KF, Huang WC (2017) Preparation and characterization of expanded graphite/metal oxides for antimicrobial application. Mater Sci Eng C 75:1019–1025

    Article  CAS  Google Scholar 

  32. Li Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63

    Article  CAS  Google Scholar 

  33. Damyanova S, Cubeiro ML, Fierro JLG (1999) Acid-redox properties of titania-supported 12-molybdophosphates for methanol oxidation. J Mol Catal A Chem 142:85–100

    Article  CAS  Google Scholar 

  34. Bakala PC, Briot E, Salles L, Brégeault JM (2006) Comparison of liquid-phase olefin epoxidation over MoOx inserted within mesoporous silica (MCM-41, SBA-15) and grafted onto silica. Appl Cata A Gen 300:91–99

    Article  CAS  Google Scholar 

  35. Kieslich CA, Alimirzaei F, Song H, Do M, Hall P (2021) Data-driven prediction of antiviral peptides based on periodicities of amino acid properties, Computer Aided. Chem Eng 50:2019–2024

    CAS  Google Scholar 

  36. Cao ZH, Yang W, Min X, Liu JH, Cao X (2021) Recent advances in synthesis and anti-tumor effect of organism-modified polyoxometalates inorganic organic hybrids. Inorg Chem Commun 134:108904

    Article  CAS  Google Scholar 

  37. Vazylyev M, Dorit SR, Haimov A, Maayan G, Neumann R (2005) Strategies for oxidation catalyzed by polyoxometalates at the interface of homogeneous and heterogeneous catalysis. Top Catal 34:93–99

    Article  CAS  Google Scholar 

  38. Clemente-León M, Coronado E, Delhaes P, Gomez GJC, Mingotaud C (2001) Hybrid Langmuir–Blodgett films formed by alternating layers of magnetic polyoxometalate clusters and organic donor molecules-towards the preparation of multifunctional molecular materials. Adv Mater 13:574–577

    Article  Google Scholar 

  39. Kulesza PJ, Karwowska B, Grzybowska B, Wieckowski A (1998) Solid-state electrochemical generation and characterization of catalytic Pt microcenters within single crystal of heteropoly phospho-12-tungstic acid. Electrochim Acta 44:1295–1300

    Article  CAS  Google Scholar 

  40. Judd DA, Nettles JH, Nevins N (2001) Polyoxometalate HIV-1 protease inhibitors. a new mode of protease inhibition. J Am Chem Soc 123:886–897

    Article  CAS  Google Scholar 

  41. Hua J, Wei X (2018) The preparation and properties of fluoroacrylate-modified polysiloxane as a fabric coating agent. Coating 8:31

    Article  Google Scholar 

  42. Klaiber A, Landsmann S, Lofflera T, Polarz S (2016) Fourfold action of surfactants with superacid head groups: polyoxometalate–silicone nanocomposites as promising candidates for proton-conducting materials. N J Chem 40:919–922

    Article  CAS  Google Scholar 

  43. Bijelic A, Aureliano M, Rompel A (2018) The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives. Chem Commun 54:1153–1169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Council of the Republic of China for supporting this work (Grant NSC 96-2113-M-606-003-MY3).

Author contributions

W-CH: conceptualization, methodology, writing-original draft and writing. K-FC: review and editing. H-WY: acquisition of data, analysis and interpretation of data. K-HW: review and editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Chien Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, WC., Cheng, KF., Yang, HW. et al. Antimicrobial properties of polysiloxane/polyoxometallates. J Sol-Gel Sci Technol 107, 629–639 (2023). https://doi.org/10.1007/s10971-023-06141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06141-7

Keywords

Navigation