Skip to main content
Log in

Mechanical properties, icephobicity, and durability assessment of HT-PDMS nanocomposites: Effectiveness of sol–gel silica precipitation content

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The main purpose of this research is to assess the effectiveness of precipitated nano-silica on mechanical properties and icephobicity of hydroxyl-terminated polydimethylsiloxane (HT-PDMS). It also tries to shed light on the correlation between mechanical characteristics and icephobicity of the abovementioned nanocomposites. In this regard, an icephobic coating was designed based on hydroxyl-terminated polydimethylsiloxane (HT-PDMS) elastomer through the sol–gel method with an emphasis on mechanical properties enhancement and durability. The quantity of precipitated nano-silica domains in HT-PDMS hybrid coatings was meticulously tailored by utilizing various ratios of tetraethyl orthosilicate (TEOS) and pre-hydrolyzed TEOS as silica domain precursors. It was established that using pre-hydrolyzed TEOS facilitated nano-silica precipitation and improved the coating’s thermal stability and mechanical properties. Nano-silica precipitation was detected by thermogravimetric analysis (TGA) and confirmed by scanning electron microscopy (SEM). The abundance of nanosized silica particles precipitated by TEOS hydrolysis and condensation was <5%, while >20% in the nanocomposite sample precipitated by using pre-hydrolyzed TEOS. Tensile measurements indicated that greater silica precipitation enhanced tensile strength, elongation at break, and Young’s modulus. The push-off test confirmed the very low shear ice adhesion strength (30–40 kPa) and the icephobic nature of the coatings. However, it was demonstrated that mechanical enhancement is correlated to ice adhesion strength up to 13.6% silica content, and icephobicity would be sacrificed at higher contents. Icing–deicing testing reveals that despite the initial ice adhesion strength increase by higher silica content, coatings present very better durability after repetitive cycles in greater silica value.

Graphical abstract

Highlights

  • The quantities of precipitated nano-silica domains are tailored by using prehydrolyzed TEOS and TEOS as inorganic precursors.

  • Mechanically and thermally enhanced HT-PDMS-based coating is developed by silica precipitation.

  • The correlation between Young’s modulus and ice adhesion strength for nanocomposite elastomers is investigated.

  • Mechanical enhancement and icephobicity is optimized for silica-precipitated HT-PDMS nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shamshiri M, Jafari R, Momen G (2021) Icephobic properties of aqueous self-lubricating coatings containing PEG–PDMS copolymers. Prog Org Coat 161:106466. https://doi.org/10.1016/j.porgcoat.2021.106486

    Article  CAS  Google Scholar 

  2. Jung S, Tiwari MK, Doan NV, Poulikakos D (2012) Mechanism of supercooled droplet freezing on surfaces. Nat Commun 3:1–8. https://doi.org/10.1038/ncomms1630

    Article  CAS  Google Scholar 

  3. Jafari R, Momen G, Farzaneh M (2016) Durability enhancement of icephobic fluoropolymer film. J Coat Technol Res 13:405–412. https://doi.org/10.1007/s11998-015-9759-z

    Article  CAS  Google Scholar 

  4. Yeong YH, Milionis A, Loth E, Sokhey J (2018) Self-lubricating icephobic elastomer coating (SLIC) for ultralow ice adhesion with enhanced durability. Cold Reg Sci Technol 148:29–37. https://doi.org/10.1016/j.coldregions.2018.01.005

    Article  Google Scholar 

  5. Mulherin ND, Haehnel RB. Ice engineering: progress in evaluating surface coatings for icing control at corps hydraulic structures. Hanover, NH: Army Engineer Research and Development Center; 2003

  6. Momen G, Jafari R, Farzaneh M (2015) Ice repellency behavior of superhydrophobic surfaces: effects of atmospheric icing conditions and surface roughness. Appl Surf Sci 349:211–218. https://doi.org/10.1016/j.apsusc.2015.04.180

    Article  CAS  Google Scholar 

  7. Shamshiri M, Jafari R, Momen G (2021) Potential use of smart coatings for icephobic applications: a review. Surf Coat Technol 424:127656. https://doi.org/10.1016/j.surfcoat.2021.127656

    Article  CAS  Google Scholar 

  8. Jung S, Dorrestijn M, Raps D, Das A, Megaridis CM, Poulikakos D (2011) Are superhydrophobic surfaces best for icephobicity. Langmuir 27:3059–3066. https://doi.org/10.1021/la104762g

    Article  CAS  Google Scholar 

  9. Antonini C, Innocenti M, Horn T, Marengo M, Amirfazli A (2011) Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg Sci Technol 67:58–67. https://doi.org/10.1016/j.coldregions.2011.02.006

    Article  Google Scholar 

  10. Yancheshme AA, Momen G, Aminabadi RJ (2020) Mechanisms of ice formation and propagation on superhydrophobic surfaces: a review. Adv Colloid Interface Sci 279:102155. https://doi.org/10.1016/j.cis.2020.102155

    Article  CAS  Google Scholar 

  11. Maghsoudi K, Vazirinasab E, Momen G, Jafari R (2021) Icephobicity and durability assessment of superhydrophobic surfaces: the role of surface roughness and the ice adhesion measurement technique. J Mater Process Technol 288:116883. https://doi.org/10.1016/j.jmatprotec.2020.116883

    Article  CAS  Google Scholar 

  12. Moriya T, Manabe K, Tenjimbayashi M, Suwabe K, Tsuchiya H, Matsubayashi T, Navarrini W, Shiratori S (2016) A superrepellent coating with dynamic fluorine chains for frosting suppression: effects of polarity, coalescence and ice nucleation free energy barrier. RSC Adv 6:92197–92205. https://doi.org/10.1039/C6RA18483A

    Article  CAS  Google Scholar 

  13. Shen Y, Wu Y, Tao J, Zhu C, Chen H, Wu Z, Xie Y (2018) Spraying fabrication of durable and transparent coatings for anti-icing application: dynamic water repellency, icing delay, and ice adhesion. ACS Appl Mater Interfaces 11:3590–3598. https://doi.org/10.1021/acsami.8b19225

    Article  CAS  Google Scholar 

  14. Zhu T, Cheng Y, Huang J, Xiong J, Ge M, Mao J, Liu Z, Dong X, Chen Z, Lai Y (2020) A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning. Chem Eng J 399:125746. https://doi.org/10.1016/j.cej.2020.125746

    Article  CAS  Google Scholar 

  15. Guerin F, Laforte C, Farinas M-I, Perron J (2016) Analytical model based on experimental data of centrifuge ice adhesion tests with different substrates. Cold Reg Sci Technol 121:93–99. https://doi.org/10.1016/j.coldregions.2015.10.011

    Article  Google Scholar 

  16. Jamil MI, Zhan X, Chen F, Cheng D, Zhang Q (2019) Durable and scalable candle soot icephobic coating with nucleation and fracture mechanism. ACS Appl Mater Interfaces 11:31532–31542. https://doi.org/10.1021/acsami.9b09819

    Article  CAS  Google Scholar 

  17. Zhuo Y, Xiao S, Amirfazli A, He J, Zhang Z. Polysiloxane as icephobic materials—the past, present and the future. Chem Eng J 405:127088. https://doi.org/10.1016/j.cej.2020.127088

  18. Nosonovsky M, Hejazi V (2012) Why superhydrophobic surfaces are not always icephobic. ACS Nano 6:8488–8491. https://doi.org/10.1021/nn302138r

    Article  CAS  Google Scholar 

  19. Owen MJ (2001) Elastomers: siloxane. In: Jürgen Buschow KH, Cahn RW, Flemings MC, Ilschner B, Edward JK, Mahajan S, Veyssière P (eds.), Encyclopedia of materials: science and technology, Elsevier 2480–2482. https://doi.org/10.1016/B0-08-043152-6/00448-4

  20. Zhuo Y, Håkonsen V, He Z, Xiao S, He J, Zhang Z (2018) Enhancing the mechanical durability of icephobic surfaces by introducing autonomous self-healing function. ACS Appl Mater Interfaces 10:11972–11978. https://doi.org/10.1021/acsami.8b01866

    Article  CAS  Google Scholar 

  21. Yuan QW, Mark JE (1999) Reinforcement of poly (dimethylsiloxane) networks by blended and in‐situ generated silica fillers having various sizes, size distributions, and modified surfaces. Macromol Chem Phys 200:206–220. https://doi.org/10.1002/(SICI)1521-3935(19990101)

    Article  CAS  Google Scholar 

  22. Paul DR, Mark JE (2010) Fillers for polysiloxane (“silicone”) elastomers. Prog Polym Sci 35:893–901. https://doi.org/10.1016/j.progpolymsci.2010.03.004

    Article  CAS  Google Scholar 

  23. Zhiwei H, Zhuo Y, He J, Zhang Z (2014) Design and preparation of sandwich-like polydimethylsiloxane (PDMS) sponges with super-low ice adhesion. Soft Matter 14:4846–4851. https://doi.org/10.1039/C8SM00820E

    Article  Google Scholar 

  24. Dou R, Chen J, Zhang Y, Wang X, Cui D, Song Y, Jiang L, Wang J (2014) Anti-icing coating with an aqueous lubricating layer. ACS Appl Mater Interfaces 6:6998–7003. https://doi.org/10.1021/am501252u

    Article  CAS  Google Scholar 

  25. Kulinich SA, Farhadi S, Nose K, Du XW (2011) Superhydrophobic surfaces: are they really ice-repellent. Langmuir 27:25–29. https://doi.org/10.1021/la104277q

    Article  CAS  Google Scholar 

  26. Sheng L, Wang F, Fang X, Ou J, Li W (2019) Icing behavior of water droplets impinging on cold superhydrophobic surface. Surf Coat Technol 363:362–368. https://doi.org/10.1016/j.surfcoat.2019.02.035

    Article  CAS  Google Scholar 

  27. Arianpour F, Farzaneh M, Kulinich SA (2013) Hydrophobic and ice-retarding properties of doped silicone rubber coatings. Appl Surf Sci 265:546–552. https://doi.org/10.1016/j.apsusc.2012.11.042

    Article  CAS  Google Scholar 

  28. Hejazi V, Sobolev K, Nosonovsky M (2013) From superhydrophobicity to icephobicity: forces and interaction analysis. Sci Rep 3:1–6. https://doi.org/10.1038/srep02194

    Article  Google Scholar 

  29. Urata C, Dunderdale GJ, England MW, Hozumi A (2015) Self-lubricating organogels (SLUGs) with exceptional syneresis-induced anti-sticking properties against viscous emulsions and ices. J Mater Chem A 3:12626–12630. https://doi.org/10.1039/C5TA02690C

    Article  CAS  Google Scholar 

  30. Subramanyam SB, Rykaczewski K, Varanasi KK (2013) Ice adhesion on lubricant-impregnated textured surfaces. Langmuir 29:13414–13418. https://doi.org/10.1021/la402456c

    Article  CAS  Google Scholar 

  31. Chaudhury MK, Kim KH (2007) Shear-induced adhesive failure of a rigid slab in contact with a thin confined film. Eur Phys J E 23:175–183. https://doi.org/10.1140/epje/i2007-10171-x

    Article  CAS  Google Scholar 

  32. Breiner JM, Mark JE, Beaucage G (1999) Dependence of silica particle sizes on network chain lengths, silica contents, and catalyst concentrations in in situ‐reinforced polysiloxane elastomers. J Polym Sci Part B: Polym Phys 37:1421–1427. 10.1002/(SICI)1099-0488(19990701)37:13<1421::AID-POLB8>3.0.CO;2-M

    Article  CAS  Google Scholar 

  33. Schaefer DWT, Keefer KD (1984) Fractal geometry of silica condensation polymers. Phys Rev Lett 53:1383. https://doi.org/10.1103/PhysRevLett.53.1383

    Article  CAS  Google Scholar 

  34. Mark JE, Pan S‐J (1982) Reinforcement of polydimethylsiloxane networks by in‐situ precipitation of silica: a new method for preparation of filled elastomers. Die Makromol Chem Rapid Commun 3:681–685. https://doi.org/10.1002/marc.1982.030031006

    Article  CAS  Google Scholar 

  35. Ulibarri TA, Beaucage G, Schaefer DW, Olivier BJ, Assink RA (1992) Molecular weight dependence of domain structure in silica-siloxane molecular composites. MRS Online Proc Libr 274:85–90. https://doi.org/10.1557/PROC-274-85

    Article  CAS  Google Scholar 

  36. Camenzind A, Schweizer T, Sztucki M, Pratsinis SE (2010) Structure & strength of silica-PDMS nanocomposites. Polymer 51:1796–1804. https://doi.org/10.1016/j.polymer.2010.02.030

    Article  CAS  Google Scholar 

  37. Şerbescu A, Saalwächter K (2009) Particle-induced network formation in linear PDMS filled with silica. Polymer 50:5434–5442. https://doi.org/10.1016/j.polymer.2009.09.063

    Article  CAS  Google Scholar 

  38. Sobhani S, Bastani S, Gedde UW, Sari MG, Ramezanzadeh B (2017) Network formation and thermal stability enhancement in evolutionary crosslinked PDMS elastomers with sol–gel-formed silica nanoparticles: comparativeness between as-received and pre-hydrolyzed TEOS. Prog Org Coat 113:117–125. https://doi.org/10.1016/j.porgcoat.2017.08.012

    Article  CAS  Google Scholar 

  39. Bakhshandeh E, Jannesari A, Ranjbar Z, Sobhani S, Saeb MR (2014) Anti-corrosion hybrid coatings based on epoxy–silica nano-composites: toward relationship between the morphology and EIS data. Prog Org Coat 77:1169–1183. https://doi.org/10.1016/j.porgcoat.2014.04.005

    Article  CAS  Google Scholar 

  40. Golovin K, Kobaku SPR, Lee DH, DiLoreto ET, Mabry JM, Tuteja A (2016) Designing durable icephobic surfaces. Sci Adv 2:1501496. https://doi.org/10.1126/sciadv.1501496

    Article  Google Scholar 

  41. Wong T-S, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447. https://doi.org/10.1038/nature10447

    Article  CAS  Google Scholar 

  42. Kendall K (1971) The adhesion and surface energy of elastic solids. J Phys D: Appl Phys 4:1186. https://doi.org/10.1088/0022-3727/4/8/320

    Article  Google Scholar 

  43. Wang C, Fuller T, Zhang W, Wynne KJ (2014) Thickness dependence of ice removal stress for a polydimethylsiloxane nanocomposite: Sylgard 184. Langmuir 30:12819–12826. https://doi.org/10.1021/la5030444

    Article  CAS  Google Scholar 

  44. Yao H, Gao H (2010) Gibson-soil-like materials achieve flaw-tolerant adhesion. J Comput Theor Nanosci 7:1299–1305. https://doi.org/10.1166/jctn.2010.1484

    Article  CAS  Google Scholar 

  45. Kaffashi A, Jannesari A, Ranjbar Z (2012) Silicone fouling-release coatings: effects of the molecular weight of poly (dimethylsiloxane) and tetraethyl orthosilicate on the magnitude of pseudobarnacle adhesion strength. Biofouling 28:729–741. https://doi.org/10.1080/08927014.2012.702342

    Article  CAS  Google Scholar 

  46. Sohoni GB, Mark JE (1992) Thermal stability of in situ filled siloxane elastomers. J Appl Polym Sci 45:1763–1775. https://doi.org/10.1002/app.1992.070451010

    Article  CAS  Google Scholar 

  47. Schaefer DW, Suryawanshi C, Pakdel P, Ilavsky J, Jemian PR (2002) Challenges and opportunities in complex materials: silica-reinforced elastomers. Physica A 314:686–695. https://doi.org/10.1016/S0378-4371(02)01190-1

    Article  CAS  Google Scholar 

  48. Golovin K, Tuteja A (2017) A predictive framework for the design and fabrication of icephobic polymers. Sci Adv 3:e1701617. https://doi.org/10.1126/sciadv.1701617

    Article  CAS  Google Scholar 

  49. Xu M, Zhao Y, Zhang X, Li Z, Zhao L, Wang Z, Gao W (2019) Highly homogeneous polysiloxane flexible coating for low earth orbital spacecraft with ultraefficient atomic oxygen resistance and self-healing behavior. ACS Appl Polym Mater 1:3253–3260. https://doi.org/10.1021/acsapm.9b00671

    Article  CAS  Google Scholar 

  50. Liu Y, Ma L, Wang W, Kota AK, Hu H (2018) An experimental study on soft PDMS materials for aircraft icing mitigation. Appl Surf Sci 447:599–609. https://doi.org/10.1016/j.apsusc.2018.04.032

    Article  CAS  Google Scholar 

  51. Langleben MP (1962) Young’s modulus for sea ice. Can J Phys 40:1–8. https://doi.org/10.1139/p62-001

    Article  Google Scholar 

  52. Wang Z (2011) Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques. Graduate theses and Dissertations, University of South Florida

  53. Meuler AJ, Smith JD, Varanasi KK, Mabry JM, McKinley GH, Cohen RE (2010) Relationships between water wettability and ice adhesion. ACS Appl Mater Interfaces 2:3100–3131. https://doi.org/10.1021/am1006035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge with gratitude the Natural Sciences and Engineering Research Council of Canada (NSERC) and Hydro-Québec who kindly supported this work financially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Sobhani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhani, S., Bakhshandeh, E., Jafari, R. et al. Mechanical properties, icephobicity, and durability assessment of HT-PDMS nanocomposites: Effectiveness of sol–gel silica precipitation content. J Sol-Gel Sci Technol 105, 348–359 (2023). https://doi.org/10.1007/s10971-022-06033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-06033-2

Keywords

Navigation