Skip to main content
Log in

Fabrication of heterostructure NiO/ZnO thin film for pseudocapacitor application

  • Original Paper: Sol–gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

An ordered NiO/ZnO heterojunction electrochemical electrode was prepared on an FTO substrate by using the spin-coating method. XRD patterns confirmed the ZnO NRs of varying lengths and NiO NPs of varying sizes are grown in the same manner as hexagonal wurtzite and cubic crystal structures, respectively. An important outcome is that both the crystal structures are fused together as a heterostructure film. Almost all Zn, Ni and O atoms primarily involved in forming heterostructure films are strongly observed. Furthermore, the charge carrier transition from the conduction band edge and/or localised defect state to the valance band edge is measured by photoluminescence spectra. Eventually, it is perceived that p-type NiO/ZnO heterostructure film has ferromagnetism, whereas n-type ZnO and p-type NiO films have weak FM and superparamagnetism. The GCD of the NiO/ZnO thin film electrode display a pseudocapacitive behaviour. A maximum Csp of 114 F/cm3 is obtained from both the CV and GCD studies, which are mainly attributed to the morphological characteristics of nanorod and nanoparticle self-assembling architectures, as well as a rational composition of the two constituents. The experimental results reveal that the spin-coated NiO/ZnO thin films are promising materials for electrochemical supercapacitors.

Graphical abstract

Highlights

  • The deposited NiO/ZnO, a p-n combined structure semiconductor, consists of ordered hexagonal rod ZnO matrix coated by a layer of NiO nanograins.

  • Innovatively, ordered rodlike ZnO with larger specific area increases the loading of active NiO and creates more active sites due to the surface area and charge transfer capability was increased.

  • Due to the contribution of p-n heterojunction structure and the synergistic effect, our prepared ordered NiO/ZnO pseudocapacitor shows a wider potential window of 0.5 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Agarwal DC, Singh UB, Gupta S, Singhal R, Kulriya PK, Singh F, Tripathi A, Singh J, Joshi US, Avasthi Jiye Cai DK (2019) Sci Rep 9:6675

    Article  CAS  Google Scholar 

  2. Purushothaman V, Ramakrishnan V, Jeganathan K (2012) Cryst Eng Comm 14:8390–8395

    Article  CAS  Google Scholar 

  3. Singh S, Kumar Y, Kumar H, Vyas S, Periasamy C, Chakrabarti P, Jit S, Park S-H (2017) Nanomater Nanotechnol 7:1–5

    Article  CAS  Google Scholar 

  4. Soundarrajan P, Sethuraman. K (2015) RSC Adv 5:44222–44233

    Article  CAS  Google Scholar 

  5. Lee C-T, Lin T-S, Chen C-H (2015) J Electron Mater 44:4722–4725

    Article  CAS  Google Scholar 

  6. Hassan Ali, Jin Y, Irfan M, Jiang Y (2018) AIP Adv 8:035212

    Article  CAS  Google Scholar 

  7. Krishnamoorty K, Kumar G, Veerasubramani S, Rhandhakrishnan, Kim SJ (2014) Mater Res Bull 50:499–502

    Article  CAS  Google Scholar 

  8. Raut SS, Dhobale JA, Sankapal BR (2017) Phys E: Low-Dimens Syst Nanostruct 87:209–212

    Article  CAS  Google Scholar 

  9. Pujari RB, Lokhande VC, Patil UM, Lee DW, Lokhande CD (2019) Electrochim Acta 301:366–376

    Article  CAS  Google Scholar 

  10. Gund GS, Dubal DP, Chodankar NR, Cho JY, Gomez-Romero P, Park C, Lokhande CD (2015) Sci Rep 5:12454–12467

    Article  Google Scholar 

  11. Buathet S, Simalaotao K, Reunchan P, Vailikhit V, Teesetsopon P, Raknual D, Kitisripanya N, Tubtimtae A (2020) Electrochim Acta 341:136049

    Article  CAS  Google Scholar 

  12. Kohmoto O, Nakagawa H, Isagawa Y, Chayahara A (2001) J Magn Magn Mater 42:1629–1630

    Article  Google Scholar 

  13. Alnoor H, Pozina G, Khranovskyy V, Liu X, Iandolo D, Willander M, Nur O (2016) J Appl Phys 119:165702

    Article  CAS  Google Scholar 

  14. Ren QH, Zhang Y, Lu HL, Wang YP, Liu WJ, Ji XM, Devi A, Jiang AQ, Zhang DW (2018) ACS Appl Mater Interfaces 10:468–476

    Article  CAS  Google Scholar 

  15. Wei C, Pang H, Cheng C, Zhao J, Li P, Zhang Y (2014) CrystEngComm 16:4169–4175

    Article  CAS  Google Scholar 

  16. Vijayaprasath G, Murugan R, Ravi G, Mahalingam T, Hayakawa Y (2014) Appl Surf Sci 313:870–876

    Article  CAS  Google Scholar 

  17. Jia X, Wu X, Liu B (2018) Dalton Trans 47:15506–15511

    Article  CAS  Google Scholar 

  18. Yang S, Liu Y, Hao Y, Yang X, Goddard III WA, Zhang XL, Cao B (2018) Adv Sci (Weinh) 5:1700659

    Article  CAS  Google Scholar 

  19. Usha KS, Sivakumar R, Sanjeeviraja C (2013) J Appl Phys 114:123501

    Article  CAS  Google Scholar 

  20. Vijayaprasath G, Ravi G, Haja Hameed AS, Mahalingam T (2014) J Phys Chem C 118:9715–9725. 12

    Article  CAS  Google Scholar 

  21. Feng N, Chen C, Meng J, Wu Y, Liu G, Wang L, Wan H, Guan G (2016) Catal Sci Technol 6:7718–7728

    Article  CAS  Google Scholar 

  22. Zhao S, Zhou Y, Zhao K, Liu Z, Han P, Wang S, Xiang W, Chen Z, Lu H, Cheng B, Yang G (2006) Phys B 373:154–156

    Article  CAS  Google Scholar 

  23. Zhu BL, Xie M, Wang J, Shi XW, Wu J, Zeng D, Xie CS (2014) Ceram Int 40:12093–12104

    Article  CAS  Google Scholar 

  24. Xian F, Li X, Laser O (2013) Technol 45:508–512

    CAS  Google Scholar 

  25. Vijayaprasath G, Soundarrajan P, Ravi G (2019) J Electron Mater 48:684–695

    Article  CAS  Google Scholar 

  26. Luo Y, Duan G, Li G, Solid J (2007) State Chem 180:2149 2153

    Google Scholar 

  27. Acharya P, Nelson ZJ, Benamara M, Manso RH, Perez Bakovic SI, Abolhassani M, Lee S, Reinhart B, Chen J, Greenlee LF (2019) ACS Omega 4:17209–17222

  28. Grosvenor AP, Biesinger MC, St Smart RC, Stewart McIntyre N (2006) Surf Sci 600:1771–1779

    Article  CAS  Google Scholar 

  29. Biju V, Abdul Khadar M (2002) J Nanopart Res 4:247–253

    Article  CAS  Google Scholar 

  30. Marchetti L, Miserque F, Perrin S, Pijolat M (2015) Surf Interface Anal 47:632–642

    Article  CAS  Google Scholar 

  31. Virgin Jeba S, Sebastiammal S, Sonia S, Fathima AL (2021) Inorg nano Met Chem 51:1431–1441

    CAS  Google Scholar 

  32. Vijayaprasath G, Murugan R, Palanisamy S, Prabhu NM, Mahalingam T, Hayakawa Y, Ravi G (2016) Mater Res Bull 76:48–61

    Article  CAS  Google Scholar 

  33. Bekermann D, Gasparotto A, Barreca D, Maccato C, Comini E, Sada C, Sberveglieri G, Devi A, Fischer RA (2012) ACS Appl Mater Interfaces 4:928–934

    Article  CAS  Google Scholar 

  34. Liu X, Liu J, Sun X (2015) J Mater Chem A 3:13900–13905

    Article  CAS  Google Scholar 

  35. Šćepanović M, Grujić-Brojčin M, Vojisavljević K, Bernik S, Srećković T (2010) J Raman Spectrosc 41:914–921

    Article  CAS  Google Scholar 

  36. Cole KM, Kirk DW, Thorpe SJ (2018) J Electrochem Soc 165:J3122

    Article  CAS  Google Scholar 

  37. Balog A, Janaky C (2019) J Electrochem Soc 166:H3265

    Article  CAS  Google Scholar 

  38. Saravanan R, Santhi K, Sivakumar N, Narayanan V, Stephen A (2012) Mater Charact 6(7):10–16

    Article  CAS  Google Scholar 

  39. Luo Y-D, Lin Y-H, Zhang X, Liu D, Shen Y, Nan CW. (2013) J Nanometer. https://doi.org/10.1155/2013/252593

  40. Hwang J-D, Chen H-Y, Chen Y-H, Ho T-H (2018) Nanotechnology 29:295705

    Article  CAS  Google Scholar 

  41. Saravanakumar B, Haritha A, Ravi G, Yuvakkumar R (2020) J Nanosci 20:2813–2822

    CAS  Google Scholar 

  42. Yang M, Lv F, Wang Z, Xiong Y, Li M, Wang W, Zhang L, Wu S, Liu H, Gu Y, Lu Z (2015) RSC Adv 5:31725–31731

    Article  CAS  Google Scholar 

  43. Karuppaiah M, Sakthivel P, Asaithambi S, Murugan R, Anandhababu G, Yuvakkumar R, Ravi G (2019) Ceram Int 45:4298–4307

    Article  CAS  Google Scholar 

  44. Bhujun B, Tan MT, Shanmugam AS (2017) Results Phys 7:345–353

    Article  Google Scholar 

  45. Yadav AA, Chavan UJ (2016) J Electroanal Chem 782:36–42

    Article  CAS  Google Scholar 

  46. Hong S-C, Kim S, Jang W-J, Han T-H, Hong J-P, Oh J-S, Youngkwan Lee TH, Lee J-H, Nam J-D (2014) RSC Adv 4:48276–48284

    Article  CAS  Google Scholar 

Download references

Acknowledgements

GVP thanks DST for financial support by NPDF (PDF/2017/000348) under the SERB Scheme and also acknowledges RUSA-Phase 2.0 (No. F.24-51/2014-U), Policy (TNMulti-Gen), Department of Education Government of India, date 9 October 2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Vijaya Prasath or G. Ravi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijaya Prasath, G., Usha, K.S., Karuppaiah, M. et al. Fabrication of heterostructure NiO/ZnO thin film for pseudocapacitor application. J Sol-Gel Sci Technol 104, 198–210 (2022). https://doi.org/10.1007/s10971-022-05919-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05919-5

Keywords

Navigation