Skip to main content
Log in

Sorbents based on Ni(OH)2/chitosan, immobilization of metal hexacyanoferrates, and application for removal of radionuclide Cs from aqueous solutions

  • Original Paper: Industrial and technological applications of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present work, in-situ formed nickel(II) hydroxide particles have been immobilized in a chitosan matrix with subsequent introduction of potassium hexacyanoferrate into this hybrid material, which has resulted in the formation of advanced composite sorbents for 137Cs removal. The immobilization of microcrystalline nickel(II) hydroxide particles has been carried out via homogeneous alkalization of nickel(II) chloride solutions by urea hydrolysis. Intercalation of the Fe(CN)64− ion into nickel hydroxide has been performed at the stage of formation of nickel hydroxide in the chitosan gel. In the process of anion exchange sorption of Fe(CN)64− ions with nickel hydroxide, a composite sorbent Ni(OH)2–CS–KNiFe(CN)6 has been formed. According to X-ray diffraction analysis, the composite sorbent also contains α-Ni(OH)2. Both types of sorbents can be used to remove cesium from wastewaters.

Graphical abstract

Highlights

  • This work resulted in the development of a simple, cheap route for sorbents fabrication for efficient Cs removal from wastewater.

  • Hydrolysis of urea during heating produced nickel hydroxide gel into chitosan gel.

  • Treatment of a nickel hydroxide gel and chitosan gel with a K4Fe(CN)6 solution leads to the formation of a composite material Chit–Ni(OH)2–K-Ni[Fe(CN)6].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang Q, O’Hare D (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112:4124–4155. https://doi.org/10.1021/cr200434v

    Article  CAS  Google Scholar 

  2. Gu P, Zhang S, Li X, Wang X, Wen T, Jehan R, Alsaedi A, Hayat T, Wang X (2018) Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut 240:493–505. https://doi.org/10.1016/j.envpol.2018.04.136

    Article  CAS  Google Scholar 

  3. Puzyrnaya LN (2019) Polyfunctional materials—effective sorbents for purification of liquid radioactive wastes. J Water Chem Technol 41:253–260. https://doi.org/10.3103/S1063455X19040088

    Article  Google Scholar 

  4. Goncharuk VV, Pshinko GN, Puzyrnaya LN (2012) Sorption-desorption processes in the system of U(VI)-layered double hydroxide intercalated with EDTA. J Water Chem Technol 34:88–95. https://doi.org/10.3103/S1063455X12020038

    Article  Google Scholar 

  5. Kosorukov AA, Pshinko GN, Puzyrnaya LN, Kobets SA (2013) Extraction of U(VI) from aqueous media by layer double hydroxides intercalated by chelating agents. J Water Chem Technol 35:104–111. https://doi.org/10.3103/S1063455X13030028

    Article  Google Scholar 

  6. Kulyukhin SA, Krasavina EP, Gordeev AV (2019) U(VI) sorption on layered double hydroxides of mg and al, containing b-cyclodextrin, from aqueous solutions. Khimicheskaya Tekhnol (Chem Eng) 20:374–379. https://doi.org/10.31044/1684-5811-2019-20-8-374-379

    Article  Google Scholar 

  7. Kulyukhin SA, Krasavina EP, Gredina IV, Rumer IA, Mizina LV (2008) Sorption of cesium, strontium, and yttrium radionuclides from the aqueous phase on layered double hydroxides. Radiochemistry 50:493–501. https://doi.org/10.1134/S1066362208050111

    Article  CAS  Google Scholar 

  8. Boclair JW, Braterman PS, Brister BD, Wang Z, Yarberry F (2001) Physical and chemical interactions between Mg:Al layered double hydroxide and hexacyanoferrate. J Solid State Chem 161:249–258. https://doi.org/10.1006/jssc.2001.9306

    Article  CAS  Google Scholar 

  9. Zhang J, Xu Y, Liu J, Zhou J, Xu ZP, Qian G (2013) Fe(CN)63−/Fe(CN)64− redox in the interlayer determined by the charge density of ZnnCr-layered double hydroxides. J Solid State Chem 198:506–510. https://doi.org/10.1016/j.jssc.2012.11.006

    Article  CAS  Google Scholar 

  10. Rajamathi JT, Raviraj NH, Ahmed MF, Rajamathi M (2009) Hexacyanoferrate-intercalated nickel zinc hydroxy double salts. Solid State Sci 11:2080–2085. https://doi.org/10.1016/j.solidstatesciences.2009.09.001

    Article  CAS  Google Scholar 

  11. Panda HS, Srivastava R, Bahadur D (2009) Intercalation of hexacyanoferrate(III) ions in layered double hydroxides: a novel precursor to form ferri-/antiferromagnetic exchange coupled oxides and monodisperse nanograin spinel ferrites. J Phys Chem C 113:9560–9567. https://doi.org/10.1021/jp8115066

    Article  CAS  Google Scholar 

  12. Lang M, Delahaye E, Foix D, Ihiawakrim D, Ersen O, Leuvrey C, Greneche JM, Rogez G, Rabu P(2016) Pseudomorphic transformation of layered simple hydroxides into prussian blue analogue nanoplatelets Eur J Inorg Chem 2030–2038. https://doi.org/10.1002/ejic.201501338

  13. Kulyukhin SA, Krasavina EP, Rumer IA, Mizina LV, Konovalova NA, Gredina IV (2011) Effect of complexing anions on sorption of U(VI), 90Sr, and 90Y from aqueous solutions on layered double hydroxides of Mg, Al, and Nd. Radiochemistry 53:504. https://doi.org/10.1134/S1066362211050109

    Article  CAS  Google Scholar 

  14. Kulyukhin SA, Krasavina EP, Rumer IA (2015) Sorption of 137Cs from aqueous solutions onto layered double hydroxides containing the Fe(CN)64− ion in the interlayer space. Radiochemistry 57:69–72. https://doi.org/10.1134/S1066362215010105

    Article  CAS  Google Scholar 

  15. Pshinko GN, Puzyrnaya LN, Kobets SA, Fedorova VM, Kosorukov AA, Demchenko VYa (2015) Layered double hydroxide of Zn and Al, intercalated with hexacyanoferrate(II) ions, as a sorbent for removing cesium radionuclides from aqueous solutions. Radiochemistry 57:259–265. https://doi.org/10.1134/S1066362215030066

    Article  CAS  Google Scholar 

  16. Pshinko GN, Puzyrnaya LN, Shunkov VS, Kosorukov AA, Demchenko VYa (2018) Removal of radiocesium from aqueous media with zinc–aluminum layered double hydroxide intercalated with copper(II) hexacyanoferrate. Radiochemistry 60:395–399. https://doi.org/10.1134/S1066362218040082

    Article  CAS  Google Scholar 

  17. Han Y, Liu Z-H, Yang Z, Wang Z, Tang X, Wang T, Fan L, Ooi K (2008) Preparation of Ni2+−Fe3+ layered double hydroxide material with high crystallinity and well-defined hexagonal shapes. Chem Mater 20:360–363. https://doi.org/10.1021/cm7023789

    Article  CAS  Google Scholar 

  18. Xiao T, Tang Y, Jia Z et al. (2009) Self-assembled 3D flower-like Ni2+–Fe3+ layered double hydroxides and their calcined products. Nanotechnology. 20:475603. https://doi.org/10.1088/0957-4484/20/47/475603

    Article  CAS  Google Scholar 

  19. Soler-Illia GJ, de AA, Jobbágy M, Regazzoni AE, Blesa MA (1999) Synthesis of nickel hydroxide by homogeneous alkalinization. Precipitation mechanism. Chem Mater. 11:3140–3146. https://doi.org/10.1021/cm9902220

    Article  CAS  Google Scholar 

  20. Mavis B (2003) Homogeneous precipitation of nickel hydroxide powders. Retrospective Theses and Dissertations Paper 731:125. https://doi.org/10.31274/rtd-180813-146

  21. Nagornyi OV, Kolyshkin AS, Vol’khin VV (2003) Sorption of hexacyanoferrate(II, III) anions on nickel(II) hydroxide. Russian J Appl Chem 76:1238–1241. https://doi.org/10.1023/B:RJAC.0000008292.38249.f4

    Article  CAS  Google Scholar 

  22. Kopkova EK, Kondratenko TV, Mayorov DV (2020) Synthesis and sorption properties of layered double magnesium and aluminum hydroxides relative to ferrocyanide anions. Khimicheskaya Tekhnol (Chem Eng) 21:386–394. https://doi.org/10.31044/1684-5811-2020-21-9-386-394

    Article  Google Scholar 

  23. Zemskova LA, Egorin AM, Tokar EA (2021) Synthesis of ferrocyanide sorbents in polysaccharide matrices. Russ J Inorg Chem 66:1268–1274. https://doi.org/10.1134/S0036023621090175

    Article  CAS  Google Scholar 

  24. Grandjean A, Delchet C, Causse J et al. (2016) Effect of the chemical nature of different transition metal ferrocyanides to entrap Cs. J Radioanal Nucl Chem 307:427–436. https://doi.org/10.1007/s10967-015-4098-1

    Article  CAS  Google Scholar 

  25. Choo CK, Goh TL, Shahcheraghi L, Ngoh GC, Abdullah AZ, Amini Horri B, Salamatinia B (2016) Synthesis and characterization of NiO nano-spheres by templating on chitosan as a green precursor. J Am Ceram Soc 99:3874–3882. https://doi.org/10.1111/jace.14411

    Article  CAS  Google Scholar 

  26. Zhou L, Li Z, Zeng K, Chen Q, Wang Y, Liu Z, Adesina AA (2017) Immobilization of in-situ formed Ni(OH)2 nanoparticles in chitosan beads for efficient removal of U(VI) from aqueous solutions. J Radioanal Nucl Chem 314:467–476. https://doi.org/10.1007/s10967-017-5407-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by the State Order of the Institute of Chemistry FEBRAS, project No. FWFN-2021-0002 (0205-2021-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Egorin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemskova, L., Tokar, E., Shlyk, D. et al. Sorbents based on Ni(OH)2/chitosan, immobilization of metal hexacyanoferrates, and application for removal of radionuclide Cs from aqueous solutions. J Sol-Gel Sci Technol 108, 250–255 (2023). https://doi.org/10.1007/s10971-022-05861-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05861-6

Keywords

Navigation