Skip to main content
Log in

Modulation of structure and magnetic properties of terbium iron garnet by the introduction of Bi3+ and Ce3+

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Bi3+ and Ce3+ substituted rare-earth iron garnet is famous magneto-optical material for the application in integrated optical system and microwave devices. Nevertheless, the modulation of Bi3+ and Ce3+ on the structure and magnetic behavior of terbium iron garnet (TIG) is not very clear, which limits its practical applications. Herein, a series of Tb3−xBixFe5O12 (Bi:TIG, x = 0–0.9) and Tb3−xCexFe5O12 (Ce:TIG, x = 0–0.3) have been readily prepared by the sol-gel method. Both of pure phase TIG and Bi:TIG was obtained when calcined at 800 °C, while Ce:TIG has been prepared at 900 °C. Cubic garnet structure for both systems has been maintained, while the solubility limit of Ce in TIG was around x = 0.2. With larger ionic radius, the introduction of Bi3+ and Ce3+ effectively induces enlarged lattice parameters and modification of magnetic behavior. When Bi3+ was increased from x = 0 to 0.9, the saturated magnetization (Ms) was moderately enhanced and the coercive field (Hc) was effectively reduced. However, compared with TIG, Ms of Ce:TIG was slightly decreased, and Hc is mildly increased. The modulation in the magnetic behaviors is systematically discussed, regarding the variation in the super-exchange interaction, particle morphology and the magnetic anisotropy. These results are beneficial for the design of novel iron garnets for the application of switching, microwave and non-reciprocal related devices.

The introduction of diamagnetic Bi and paramagnetic Ce effectively induces structure distortion and magnetic modulation.

Highlights

  • A series of Tb3−xBixFe5O12 (Bi:TIG, x = 0–0.9) and Tb3−xCexFe5O12 (Ce:TIG, x = 0−0.3) have been readily prepared by the sol–gel method.

  • Cubic garnet structure for Bi:TIG and Ce:TIG has been maintained with enlarged lattice parameters, while the solubility of Ce in TIG was around x = 0.2.

  • The influence of diamagnetic Bi and paramagnetic Ce on the magnetic properties was investigated.

  • The magnetic modulation was explained the variation in the super-exchange interaction, particle morphology and the magnetic anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jiang YS, Shen H, Xu JY, Ma J, Wang HY, Lu BL (2021) Large size rare earth iron garnet single crystals grown by the flux-Bridgman method. J Rare Earth 39:1547–1553

    Article  CAS  Google Scholar 

  2. Yang Y, Liu T, Bi L, Deng LJ (2021) Recent advances in development of magnetic garnet thin films for applications in spintronics and photonics. J Alloy Compd 860:158235

    Article  CAS  Google Scholar 

  3. Liu HP, Shen JR, Liu XF, Chen X, Hu XL, Zhuang NF (2021) Edge-defined film-fed growth of incongruent-melting Ce,Ga:GIG crystal with high magneto-optical performance. J Alloy Compd 888:161456

    Article  CAS  Google Scholar 

  4. Fakhrul T, Tazlaru S, Khurana B, Beran L, Bauer J, Vančík M, Marchese A, Tsotsos E, Kučera M, Zhang Y, Veis M, Ross CA (2021) High figure of merit magneto-optical Ce-and Bi-Substituted terbium iron garnet films integrated on Si. Adv Opt Mater 9(16):2100512

    Article  CAS  Google Scholar 

  5. Li J, Sun YH, Gao F, Su HK, Han XN, Liang Z, Zhang HW, Li Q (2021) Enhanced FMR linewidth and magnetic properties of In3+-doped YIG ferrite materials for microwave devices applications. J Magn Magn Mater 538:168318

    Article  CAS  Google Scholar 

  6. Madhan K, Murugaraj R (2020) Investigation on microstructural, electrical and optical properties of Nd-Doped BaCo0.01Ti0.99O3 Perovskite. J Electron Mater 49(1):377–384

    Article  CAS  Google Scholar 

  7. Wang MH, Shen H, Tian T, Xian Q, Xu JY, Jin M, Jia RP (2020) Preparation and Tunable Luminescence of Eu Doped KNN Ceramics. J Inorg Mater 35(2):236–242

    Google Scholar 

  8. Li WK, Guo GY (2021) First-principles study on magneto-optical effects in the ferromagnetic semiconductors Y3Fe5O12 and Bi3Fe5O12. Phys Rev B 103:014439

    Article  CAS  Google Scholar 

  9. Yu R, He K, Liu Q, Gan XC, Miao BF, Sun L, Du J, Cai HL, Wu XS, Wu MZ, Ding HF (2019) Nonvolatile electric-field control of ferromagnetic resonance and spin pumping in Pt/YIG at room temperature. Adv Electron Mater 5(3):1800663

    Article  CAS  Google Scholar 

  10. Aung YL, Ikesue A (2019) Transparent Tb3Fe5O12 ceramics as Mid-IR isolator. J Alloy Compd 773:739–742

    Article  CAS  Google Scholar 

  11. Ikesue A, Aung YL, Yasuhara R, Iwamoto R (2020) Giant Faraday rotation in heavily Ce-doped YIG bulk ceramics. J Eur Ceram Soc 40(15):6073–6078

    Article  CAS  Google Scholar 

  12. Basavad M, Shokrollahi H, Golkari M (2020) Effect of thermal cycle and Bi/Eu doping on the solubility of Ce in YIG. Ceram Int 46(12):20144–20154

    Article  CAS  Google Scholar 

  13. Xu HT, Yang H (2008) Magnetic properties of YIG doped with cerium and gadolinium ions. J Mater Sci:Mater Electron 19:589–593

    CAS  Google Scholar 

  14. Luo SL, Xu ZT, Liu J, Xu BL, Ji SY, Ding Y, Zhang ST, Zhang L, Duan T, Lei JH (2021) The solubility, microstructure, and chemical durability of Ce-doped YIG ceramics designed as actinide waste forms. Int J Energ Res 45(14):19883–19894

    Article  CAS  Google Scholar 

  15. Zhang Y, Wang CT, Liang X et al. (2017) Enhanced magneto-optical effect in Y1.5Ce1.5Fe5O12 thin films deposited on silicon by pulsed laser deposition. J Alloy Compd 703:591–599

    Article  CAS  Google Scholar 

  16. Wu YJ, Fu HP, Hong RY, Zheng Y, Wei DG (2017) Influence of surfactants on co-precipitation synthesis of Bi-YIG particles. J Alloy Compd 470:497–501

    Article  CAS  Google Scholar 

  17. Aakansha RS (2019) Investigation of magnetic and relaxor dielectric properties of polycrystalline gadolinium iron garnet by Bi substitution. Appl Phys A 125(8):1–9

    Article  CAS  Google Scholar 

  18. Golkari M, Shokrollahi H, Yang H (2020) The influence of Eu cations on improving the magnetic properties and promoting the Ce solubility in the Eu, Ce-substituted garnet synthesized by the solid state route. Ceram Int 46(7):8553–8560

    Article  CAS  Google Scholar 

  19. Arsad AZ, Ibrahim NB (2016) The effect of Ce doping on the structure, surface morphology and magnetic properties of Dy doped-yttrium iron garnet films prepared by a sol-gel method. J Magn Magn Mater 410:128–136

    Article  CAS  Google Scholar 

  20. Shao CY, Xu WB, Ollier N, Guzik M, Boulon G, Yu L, Zhang L, Yu CL, Wang SK, Hu LL (2016) Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses. J Appl Phys 120(15):153101

    Article  CAS  Google Scholar 

  21. Ahmed A, Siddique MN, Ali T, Tripathi P (2019) Defect assisted improved room temperature ferromagnetism in Ce doped SnO2 nanoparticles. Appl Surf Sci 483:463–471

    Article  CAS  Google Scholar 

  22. Kumar PN, Mishra SK, Kannan S (2017) Structural Perceptions and Mechanical Evaluation of β‑Ca3(PO4)2/c-CeO2 Composites with Preferential Occupancy of Ce3+ and Ce4+. Inorg Chem 56:3600–3611

    Article  CAS  Google Scholar 

  23. Shen H, Xian Q, Xie T, Wu AH, Wang MH, Xu JY, Jia RP, Kalashnikova AM (2018) Modulation of magnetic transitions in SmFeO3 single crystal by Pr3+ substitution. J Magn Magn Mater 466:81–86

    Article  CAS  Google Scholar 

  24. Naik SR, Salker AV (2012) Enhancement in the magnetic moment with Cr3+ doping and its effect on the magneto-structural properties of Ce0.1Y2.9Fe5O12. Phys Chem Chem Phys 14(28):10032–10040

    Article  CAS  Google Scholar 

  25. Li Y, Wu YH, Xu LW, Gu Q, Wang SH, Xu XM, Zhang XH, Wu SF (2021) Enhancement in the Magnetic Properties of Cr3+ and Ce3+ Substitution Thulium Iron Garnet Synthesized via Sol-Gel Route. J Supercond Nov Magn 2021:1–8

    Google Scholar 

  26. Tshabalala KG, Nagpure IM, Swart HC, Ntwaeaborwa OM (2012) Enhanced green emission from UV down-converting Ce3+-Tb3+ co-activated ZnAl2O4 phosphor. J Vac Sci Technol B 30(3):031401

    Article  CAS  Google Scholar 

  27. Wang CY, Yu BY, Fu HF, Wang P, Wang CC (2019) A mixed valence Tb (III)/Tb (IV) metal-organic framework: Crystal structure, luminescence property and selective detection of naproxen. Polyhedron 159:298–307

    Article  CAS  Google Scholar 

  28. Zhang JY, Chen HT, Wang JP, Wang DW, Han D, Zhang J, Wang SW (2019) Phase transformation process of Tb2O3 at elevated temperature. Scr Mater 171:108–111

    Article  CAS  Google Scholar 

  29. Park IJ, Kang KU, Kim CS (2006) Temperature-dependent magnetic properties of bismuth substituted terbium-iron garnets. IEEE Trans Magn 42(10):2882–2884

    Article  CAS  Google Scholar 

  30. Borade RB, Kadam SB, Wagare DS, Kadam RH, Shirsath SE, Nimbore SR, Kadam AB (2019) Fabrication of Bi3+ substituted yttrium aluminum iron garnet (YAIG) nanoparticles and their structural, magnetic, optical and electrical investigations. J Mater Sci: Mater Electron 30(22):19782–19791

    CAS  Google Scholar 

  31. Madhan K, Murugaraj R (2020) Enrichment of optical, electrical, and magnetic properties of Li+, La3+ doped BaTiO3 perovskite multifunctional ceramics. Appl Phys A 126:97

    Article  CAS  Google Scholar 

  32. Madhan K, Murugaraj R (2020) Structural, electrical, and weak ferromagnetic-to-antiferromagnetic nature of Ni and La co-doped BaTiO3 by sol–gel combustion route. J Sol-Gel Sci Technol 95:11–21

    Article  CAS  Google Scholar 

  33. Akhtar MN, Ali K, Umer A, Ahmad T, Khan MA (2018) Structural elucidation, and morphological and magnetic behavior evaluations, of low-temperature sintered, Ce-doped, nanostructured garnet ferrites. Mater Res Bull 101:48–55

    Article  CAS  Google Scholar 

  34. Akhtar MN, Sulong AB, Ahmad M, Khan MA, Ali A, Islam MU (2016) Impacts of Gd-Ce on the structural, morphological and magnetic properties of garnet nanocrystalline ferrites synthesized via sol-gel route. J Alloy Compd 660:486–495

    Article  CAS  Google Scholar 

  35. Baños-López E, Cortés-Escobedo CA, Sánchez-De Jesús F, Barba-Pingarrón A, Bolarín-Miró AM (2018) Crystal structure and magnetic properties of cerium-doped YIG: Effect of doping concentration and annealing temperature. J Alloy Compd 730:127–134

    Article  CAS  Google Scholar 

  36. Ibrahim NB, Arsad AZ (2016) Investigation of nanostructural, optical and magnetic properties of cerium-substituted yttrium iron garnet films prepared by a sol gel method. J Magn Magn Mater 401:572–578

    Article  CAS  Google Scholar 

  37. Gharibshahi M, Hasanpour A, Niyaiefar M (2018) Study of magneto-optical characteristics of cerium incorporated yttrium iron garnet films. Mater Res Bull 99:219–224

    Article  CAS  Google Scholar 

  38. Borade RB, Shirsath SE, Vats G, Gaikwad AS, Patange SM, Kadam SB, Kadam RH, Kadam AB (2019) Polycrystalline to preferred-(100) single crystal texture phase transformation of yttrium iron garnet nanoparticles. Nanoscale Adv 1(1):403–413

    Article  CAS  Google Scholar 

  39. Raad NA, Shokrollahi H, Basavad M, Arab SM (2020) Magnetic performance and structural evaluation of La, Ce, Bi-substituted yttrium iron garnets. Ceram Int 46(13):21551–21559

    Article  CAS  Google Scholar 

  40. Rivera AMM, López JER, Munevar J, Saitovitch EB, Aldana LCM, Vargas CAP (2021) Synthesis and characterization of the structural and magnetic properties of the Sm3−xGdxFe5O12 (x= 0.0-1.0) garnets using solid-state reaction and citrate methods. J Alloy Compd 859:157883

    Article  CAS  Google Scholar 

  41. Khalifeh MR, Shokrollahi H, Arab SM, Yang H (2020) The role of Dy incorporation in the magnetic behavior and structural characterization of synthetic Ce, Bi-substituted yttrium iron garnet. Mater Chem Phys 247:122838

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the NSAF of China (Grant No. U2130124), National Natural Science Foundation of China (Grant No. 51972213) and Shanghai Municipal Commission of Economy and Informatization, China (Grant No. GYQJ-2020-1-19).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Shen or Jiayue Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Wang, H., Ma, J. et al. Modulation of structure and magnetic properties of terbium iron garnet by the introduction of Bi3+ and Ce3+. J Sol-Gel Sci Technol 103, 539–548 (2022). https://doi.org/10.1007/s10971-022-05849-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05849-2

Keywords

Navigation