Skip to main content

Advertisement

Log in

Mechanical properties of glass ionomer cement incorporating forsterite nanoparticles synthesized by the sol-gel method

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study aimed to fabricate a glass ionomer cement/forsterite nanocomposite to improve its mechanical properties for biomaterials applications. For this purpose, forsterite was synthesized using a sol-gel method. Then, for preparing the nanocomposite sample, 2, 4, and 6 wt% of the forsterite was added to a glass ionomer cement (GIC). Subsequently, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectrophotometry (FTIR) analysis were used to characterize the synthesized forsterite. Furthermore, compressive strength, microhardness, and fracture toughness of the fabricated nanocomposite were evaluated and a fluoride-releasing test in artificial saliva was also applied to investigate the cytotoxicity feature of the prepared nanocomposites. The XRD results confirmed that nanocrystalline forsterite was successfully synthesized. Also, the results of FTIR analysis proved the existence of (SiO3H) groups on the forsterite surface. The highest concurrent enhancements of compressive strength, microhardness, and fracture toughness features were observed for GIC-2 wt% forsterite nanocomposite. In addition, results of the fluoride-releasing test showed that the amount of released fluoride from the prepared nanocomposite was slightly lower than the GIC. All in all, the improvements in mechanical properties, optimal fluoride-releasing, bioactive properties, and the prepared nanocomposite could introduce appropriate options for underload dental restorations and orthopedics implants.

Graphical abstract

Highlights

  • Forsterite and glass ionomer cement/Forsterite nanocomposite was synthesized by the sol-gel method.

  • Adding forsterite nanoparticles to GIC causes a decrease in fluoride release.

  • The optimum content of Forsterite nanoparticles for enhancing mechanical properties of GIC is 2 wt%.

  • The CIG/forsterite nanocomposite is an appropriate option for underload dental restorations and orthopedics implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Prosser HJ, Powis DR, Brant P, Wilson AD (1984) Characterization of glass-ionomer cements 7. the physical properties of current materials. J Dent 12(3):231–240

    Article  CAS  Google Scholar 

  2. Khan AS, Khan M, Rehman IU (2013) Nanoparticles, Properties, and Applications in Glass Ionomer Cements. Nanobiomaterials in Clinical Dentistry, Chapter 5, 93–108

  3. Moshaverinia A, Ansari S, Moshaverinia M, Roohpour N, Darr JA, Rehman I (2008) Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC),”. Acta Biomater 4(2):432–440

    Article  CAS  Google Scholar 

  4. Sun J, Wang Y, Liu S, Dehghani A, Xiang X, Wei J, Wang X (2021) Mechanical, chemical and hydrothermal activation for waste glass reinforced cement. Constr Build Mater 301:124361

    Article  CAS  Google Scholar 

  5. Wilson AD, Kent BE (1972) A new translucent cement for dentistry. The glass ionomer cement, Br Dent J 132(4):133–135

    Article  CAS  Google Scholar 

  6. Werner S, Robert P, Peter J, Oswald G (1979) Mixing component for dental glass ionomer cements, United States Patents, US4360605A

  7. Yli-Urpo H, Närhi M, Närhi T (2005) Compound changes and tooth mineralization effects of glass ionomer cements containing bioactive glass (S53P4), an in vivo study. Biomaterials 26(30):5934–5941

    Article  CAS  Google Scholar 

  8. Xie D, Brantley WA, Culbertson BM, Wang G (2000) Mechanical properties and microstructures of glass-ionomer cements. Dent Mater 16(2):129–138

    Article  CAS  Google Scholar 

  9. Arita K, Lucas ME, Nishino M (2003) The effect of adding hydroxyapatite on the flexural strength of glass ionomer cement. Dent Mater J 22(2):126–136

    Article  CAS  Google Scholar 

  10. Yamamoto A, Arita K, Lucas M, Shinonaga Y, Harada K, Abe Y (2009) “The Development of a New Hydroxyapatite-Ionomer Cement,” 9th World Congress on Preventive Dentistry, Phuket

  11. Goenka S, Balu R, Sampath Kumar TS (2012) Effects of nanocrystalline calcium deficient hydroxyapatite incorporation in glass ionomer cements. J Mech Behav Biomed Mater 7:69–76

    Article  CAS  Google Scholar 

  12. McDonnell RD, Spiers CJ, Peach CJ (2002) Fabrication of dense forsterite–enstatite polycrystals for experimental studies. Phys Chem Miner 29(1):19–31

    Article  CAS  Google Scholar 

  13. Ni S, Chou L, Chang J (2007) Preparation and characterization of forsterite (Mg2SiO4) bioceramics. Ceram Int 33(1):83–88

    Article  CAS  Google Scholar 

  14. Kharaziha M, Fathi MH (2010) Improvement of mechanical properties and biocompatibility of forsterite bioceramic addressed to bone tissue engineering materials. J Mech Behav Biomed Mater 3(7):530–537

    Article  CAS  Google Scholar 

  15. Huang B, Li C, Zhang Y, Ding W, Yang M, Yang Y, Zhai H, Xu X, Wang D, Debnath S, Jamil M, Li HN, Ali HM, Gupta MK, Said Z (2021) Advances in fabrication of ceramic corundum abrasives based on sol–gel process. Chin J Aeronaut 34(6):1–17

    Article  Google Scholar 

  16. Liu Y, Zhang Q, Yuan H, Luo K, Li J, Hu W, Pan Z, Xu M, Xu S, Levchenko I, Bazaka K (2021) Comparative study of photocatalysis and gas sensing of ZnO/Ag nanocomposites synthesized by one- and two-step polymer-network gel processes. J Alloy Compd 868:158723

    Article  CAS  Google Scholar 

  17. Sayyedan FS, Fathi M, Edris H, Doostmohammadi A, Mortazavi V, Shirani F (2013) Fluoride release and bioactivity evaluation of glass ionomer: forsterite nanocomposite. Dent Res J (Isfahan) 10(4):452–459

    Google Scholar 

  18. Moshaverinia M, Navas A, Jahedmanesh N, Shah KC, Moshaverinia A, Ansari S (2019) Comparative evaluation of the physical properties of a reinforced glass ionomer dental restorative material. J Prosthet Dent 122(2):154–159

    Article  CAS  Google Scholar 

  19. Zhang Y, Li C, Ji H, Yang X, Yang M, Jia D, Zhang X, Li R, Wang J (2017) Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int J Mach Tools Manuf 122:81–97

    Article  Google Scholar 

  20. Liu W, Guo Z, Wang C, Niu S (2021) Physico-mechanical and microstructure properties of cemented coal gangue-fly ash backfill: effects of curing temperature. Constr Build Mater 299:124011

    Article  CAS  Google Scholar 

  21. Moradkhani A, Baharvandi H, Tajdari M, Latifi H, Martikainen J (2013) Determination of fracture toughness using the area of micro-crack tracks left in brittle materials by vickers indentation test,”. J Adv Ceram 2(1):87–102

    Article  CAS  Google Scholar 

  22. Kenneth J, Anusavice DMD, Shen C, Rawls HR (2012) Phillips’ Science of Dental Materials, Elsevier Health Sciences

  23. Sakaguchi RL, Powers JM (2012) Craig’s Restorative Dental Materials 13th Edition, Mosby, Philadelphia PA

  24. Nishimura T, Shinonaga Y, Abe Y, Kawai S, Arita K (2014) Porous hydroxyapatite can improve strength and bioactive functions of glass ionomer cement. Nano Biomed 6:53–62

    Google Scholar 

  25. Kharaziha M, Fathi MH (2009) Synthesis and characterization of bioactive forsterite nanopowder. Ceram Int 35(6):2449–2454

    Article  CAS  Google Scholar 

  26. Forsten L (1977) Fluoride release from a glass ionomer cement. Eur J Oral Sci 85(6):503–504

    Article  CAS  Google Scholar 

  27. Shoreh SKH, Ahmadyari-Sharamin M, Ghayour H, Hassanzadeh-Tabrizi SA, Pournajaf R, Tayebi M (2021) Two- stage synthesis of SnO2-Ag/MgFe2O4 nanocomposite for photocatalytic application. Surf Interfaces 26:101326

    Article  CAS  Google Scholar 

  28. Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, Li R, Wang J (2017) Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tools Manuf 122:55–65

    Article  Google Scholar 

  29. Khezrloo A, Aghaie E, Tayebi M (2018) Split tensile strength of slag-based boroaluminosilicate geopolymer. J Aust Ceram Soc 54(1):65–70

    Article  CAS  Google Scholar 

  30. Hassanzadeh-Tabrizi SA, Norbakhsh H, Pournajaf R, Tayebi M (2021) Synthesis of mesoporous cobalt ferrite/hydroxyapatite core-shell nanocomposite for magnetic hyperthermia and drug release applications. Ceram Int 47(13):18167–18176

    Article  CAS  Google Scholar 

  31. Dehkordi BA, Nilforoushan MR, Talebian N, Tayebi M (2021) A comparative study on the self-cleaning behavior and antibacterial activity of portland cement by addition of TiO2 and ZnO nanoparticles. Mater Res Express 8(3):35403

    Article  CAS  Google Scholar 

  32. Yan Y, Feng L, Shi M, Cui C, Liu Y (2020) Effect of plasma-activated water on the structure and in vitro digestibility of waxy and normal maize starches during heat-moisture treatment. Food Chem 306:125589

    Article  CAS  Google Scholar 

  33. Manafi S, Mirjalili F, Joughehdoust S (2020) Synthesis of FAp, forsterite, and fap/forsterite nanocomposites by sol-gel method. Adv Ceram Prog 6(2):35–42

    Google Scholar 

  34. Khezrloo A, Tayebi M, Shafiee A, Aghaie A (2021) Evaluation of compressive and split tensile strength of aluminosilicate geopolymer reinforced by waste polymeric materials using Taguchi method. Mater Res Express 8(2):25504

    Article  CAS  Google Scholar 

  35. Khiri MZA, Matori KA, Zaid MHM, Abdullah AC, Zainuddin N, Jusoh WNW, Jalil RA, Rahman NAA, Kul E, Wahab SAA, Effendy N (2020) Soda lime silicate glass and clam shell act as precursor in synthesize calcium fluoroaluminosilicate glass to fabricate glass ionomer cement with different ageing time. J Mater Res Technol 9(3):6125–6134

    Article  CAS  Google Scholar 

  36. Abbasi R, Nodehi A, Atai M (2020) Synthesis of poly(acrylic-co-itaconic acid) through precipitation photopolymerization for glass-ionomer cements: characterization and properties of the cements. Dent Mater 36(6):e169–e183

    Article  CAS  Google Scholar 

  37. Nagaraja Upadhya P, Kishore G (2005) Glass ionomer cement: the different generations. Trends Biomater Artif Organs 18(2):158–165

    Google Scholar 

  38. Algera TJ, Kleverlaan CJ, Prahl-Andersen B, Feilzer AJ (2006) The influence of environmental conditions on the material properties of setting glass-ionomer cements. Dent Mater 22(9):852–856

    Article  CAS  Google Scholar 

  39. Gao T, Li C, Yang M, Zhang Y, Jia D, Ding W, Debnath S, Yu T, Said Z, Wang J (2021) Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant. J Mater Process Technol 290:116976

    Article  CAS  Google Scholar 

  40. Feng J, Chen B, Sun W, Wang Y (2021) Microbial induced calcium carbonate precipitation study using bacillus subtilis with application to self-healing concrete preparation and characterization. Constr Build Mater 280:122460

    Article  CAS  Google Scholar 

  41. Alvanforoush N, Wong R, Burrow M, Palamara J (2019) Fracture toughness of glass ionomers measured with two different methods. J Mech Behav Biomed Mater 90:208–216

    Article  CAS  Google Scholar 

  42. Mitra SB, Kedrowski BL (1994) Long-term mechanical properties of glass ionomers. Dent Mater 10(2):78–82

    Article  CAS  Google Scholar 

  43. Sayyedan FS, Fathi MH, Edris H, Doostmohammadi A, Mortazavi V, Hanifi A (2014) Effect of forsterite nanoparticles on mechanical properties of glass ionomer cements. Ceram Int 40(7, Part B):10743–10748

    Article  CAS  Google Scholar 

  44. Neelakantan P, John S, Anand S, Sureshbabu N, Subbarao C (2011) Fluoride release from a new glass-ionomer cement. Oper Dent 36(1):80–85

    Article  CAS  Google Scholar 

  45. Forsten L (1995) Resin-modified glass ionomer cements: fluoride release and uptake. Acta Odontol Scand 53(4):222–225

    Article  CAS  Google Scholar 

  46. Shi T, Lan Y, Hu Z, Wang H, Xu J, Zheng B (2022) Tensile and Fracture Properties of Silicon Carbide Whisker-Modified Cement-Based Materials. Intl J Concrete Struct Mater 16(1). https://doi.org/10.1186/s40069-021-00495-4

  47. Zhu J, Chen Y, Zhang L, Guo B, Fan G, Guan X, Zhao R (2021) Revealing the doping mechanism of barium in sulfoaluminate cement clinker phases J Cleaner Prod 295:126405. https://doi.org/10.1016/j.jclepro.2021.126405

    Article  CAS  Google Scholar 

  48. Bueno LS, Borges AFS, Navarro MFL, Nicholson JW, Hill RG, Sidhu SK (2021) Determination of chemical species of fluoride during uptake mechanism of glass-ionomer cements with NMR spectroscopy. Dent Mater 37(7):1176–1182

    Article  CAS  Google Scholar 

Download references

Author contributions

AM; contributed to the conception, data acquisition, analysis, and interpretation, drafted, critically revised the manuscript; FM; contributed to the conception, design, and analysis, critically revised the manuscript; MTH; contributed to the conception, analysis, and interpretation, critically revised the manuscript. All authors gave final approval and agreed to be accountable for all aspects of the work. They gave their final approval and agreed to be accountable for all aspects of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Maleki Nojehdehi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nojehdehi, A.M., Moghaddam, F. & Hamedani, M.T. Mechanical properties of glass ionomer cement incorporating forsterite nanoparticles synthesized by the sol-gel method. J Sol-Gel Sci Technol 107, 161–169 (2023). https://doi.org/10.1007/s10971-022-05792-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05792-2

Keywords

Navigation