Skip to main content
Log in

Photocatalytic degradation of methylene blue by flowerlike rutile-phase TiO2 film grown via hydrothermal method

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper presents the effects of operating parameters on the photocatalytic degradation of methylene blue using flowerlike rutile-phase TiO2 films synthesised by a hydrothermal method. The findings show that numerous parameters such as the catalyst morphology, the presence of oxygen vacancy/Ti3+ surface defects, initial pH of methylene blue solution, active species, and initial concentration of methylene blue influence the photocatalytic degradation of the dye. Based on the results obtained, the presence of oxygen vacancy/Ti3+ surface defects act as an electron trap that helps generate more electrons and holes, which contributes to the enhancement of the photocatalytic activity of the TiO2 film. This study reveals that the optimum concentration of Ti precursor was obtained at 0.10 M, which produced a flowerlike morphology with pristine rutile-phase that reached 42% methylene blue dye degradation. The effectiveness of the optimised film was boosted by 18% degradation by adjusting the initial pH of the methylene blue solution to 12. Under such conditions, the enhancement of the electrostatic attraction between the negatively charged TiO2 and the methylene blue molecules improved the degradation. No severe deactivation of the catalyst was found even after five photocatalysis reaction cycles. This study also demonstrates that there are multiple parameters involved in optimising the photocatalytic activity of TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arora C, Soni S, Sahu S et al. (2019) Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste. J Mol Liq 284:343–352. https://doi.org/10.1016/j.molliq.2019.04.012

    Article  CAS  Google Scholar 

  2. Eljiedi AAA, Kamari A (2017) Removal of methyl orange and methylene blue dyes from aqueous solution using lala clam (Orbicularia orbiculata) shell. AIP Conf Proc 1847:40003. https://doi.org/10.1063/1.4983899

    Article  Google Scholar 

  3. Taylor P, Hanis N, Hairom H et al. (2014) Utilization of self-synthesized ZnO nanoparticles in MPR for industrial dye wastewater treatment using NF and UF membrane. Desalin Water Treat 37–41. https://doi.org/10.1080/19443994.2014.917988

  4. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. Hazard Mater 170:520–529. https://doi.org/10.1016/j.jhazmat.2009.05.039

    Article  CAS  Google Scholar 

  5. Shoabargh, S. Karimi A, Dehghanb G, Khataee A (2016) A hybrid photocatalytic and enzymatic process using glucose oxidase immobilized on TiO2/polyurethane for removal of a dye. Ind Eng Chem Res 2–9. https://doi.org/10.1016/j.jiec.2013.11.058

  6. Arabatzis IM, Antonaraki S, Stergiopoulos T et al. (2002) Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5-dichlorophenol degradation. J Photochem Photobiol A Chem 149:237–245. https://doi.org/10.1016/S1010-6030(01)00645-1

    Article  CAS  Google Scholar 

  7. Hanis N, Hairom H, Wahab A et al. (2015) Influence of zinc oxide nanoparticles in the nanofiltration of hazardous Congo red dyes. Chem Eng J 260:907–915. https://doi.org/10.1016/j.cej.2014.08.068

    Article  CAS  Google Scholar 

  8. Dong H, Zeng G, Tang L et al. (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146. https://doi.org/10.1016/j.watres.2015.04.038

    Article  CAS  Google Scholar 

  9. Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28. https://doi.org/10.1021/nl051807y

    Article  CAS  Google Scholar 

  10. Tao Y, Han Z, Cheng Z et al. (2015) Synthesis of nanostructured TiO2 photocatalyst with ultrasonication at low temperature Journal of Materials Science and Chemical Engineering 3:29–36

    Article  CAS  Google Scholar 

  11. Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys 16:20382–20386. https://doi.org/10.1039/c4cp02201g

    Article  CAS  Google Scholar 

  12. Zhao B, Zhou J, Chen Y, Peng Y (2011) Effect of annealing temperature on the structure and optical properties of sputtered TiO2 films. J Alloys Compd 509:4060–4064. https://doi.org/10.1016/j.jallcom.2011.01.020

    Article  CAS  Google Scholar 

  13. Monai M, Montini T, Fornasiero P (2017) Brookite: nothing new under the Sun? Catalysts 7:1–19. https://doi.org/10.3390/catal7100304

    Article  CAS  Google Scholar 

  14. Qian X, Han H, Chen Y, Yuan Y (2018) Sol–gel solvothermal route to synthesize anatase/brookite/rutile TiO2 nanocomposites with highly photocatalytic activity. J Sol-Gel Sci Technol 85:394–401. https://doi.org/10.1007/s10971-017-4544-3

    Article  CAS  Google Scholar 

  15. Ramirez-Sant A, Acevedo-Peña P, Córdoba EM (2012) Enhanced photocatalytic activity of TiO2 film by modification with polyethylene glycol Quim Nov 35:1931–1935

    Article  Google Scholar 

  16. Sabry RS, Muhsin YKA (2016) Synthesis and photocatalytic activity of TiO2 nanoparticles prepared by sol–gel method. J Sol-Gel Sci Technol 78:299–306. https://doi.org/10.1007/s10971-015-3949-0

    Article  CAS  Google Scholar 

  17. Jung HS, Kim H (2009) Origin of low photocatalytic activity of Rutile TiO2. Electron Mater Lett 5:73–76. https://doi.org/10.3365/eml.2009.06.073

    Article  CAS  Google Scholar 

  18. Zhang J, Liu P, Lu Z et al. (2015) One-step synthesis of rutile nano-TiO2 with exposed {111} facets for high photocatalytic activity. J Alloy Compd J 632:133–139. https://doi.org/10.1016/j.jallcom.2015.01.170

    Article  CAS  Google Scholar 

  19. Kamalia N, Hamed A, Mahat R et al. (2016) Dye-sensitized solar cell using spray pyrolysis deposition method. Journal of Engineering and Applied Sciences 11:8846–8851

    Google Scholar 

  20. Hamed NKA (2016) Influence of hydrochloric acid volume on the growth of titanium dioxide (TiO2) nanostructures by hydrothermal method. Sains Malaysiana 45:1669–1673

    Google Scholar 

  21. Lee DY, Kim JT, Park JH et al. (2013) Effect of Er doping on optical band gap energy of TiO2 thin films prepared by spin coating. Curr Appl Phys 13:1301–1305. https://doi.org/10.1016/j.cap.2013.03.025

    Article  Google Scholar 

  22. Shinde DB, Jagadale SK, Mane RK, Mane RM, Ghanwat VB(2015) Time dependent facile hydrothermal synthesis of TiO2 nanorods and their photoelectrochemical applications J Nanomed Nanotechnol S7:004. https://doi.org/10.4172/2157-7439.S7-004

    Article  Google Scholar 

  23. Zhao Z, Zhang X, Zhang G et al. (2015) Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Res 8:4061–4071. https://doi.org/10.1007/s12274-015-0917-5

    Article  CAS  Google Scholar 

  24. Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanoparticle Res 7:331–342. https://doi.org/10.1007/s11051-005-7523-5

    Article  CAS  Google Scholar 

  25. Jordan V, Javornik U, Plavec J et al. (2016) Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment. Sci Rep 6:1–13. https://doi.org/10.1038/srep24216

    Article  CAS  Google Scholar 

  26. Ye M, Liu H-Y, Lin C, Lin Z (2013) Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates. Small 9:312–321. https://doi.org/10.1002/smll.201201590

    Article  CAS  Google Scholar 

  27. Lazar MA, Varghese S, Nair SS (2012) Photocatalytic water treatment by titanium dioxide: recent updates. Catalyst 2:572–601. https://doi.org/10.3390/catal2040572

    Article  CAS  Google Scholar 

  28. Wu G, Wang J, Thomas DF, Chen A (2008) Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity. Langmuir 24:3503–3509

    Article  CAS  Google Scholar 

  29. Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Appl Catal A Gen 389:1–8. https://doi.org/10.1016/j.apcata.2010.08.053

    Article  CAS  Google Scholar 

  30. Hamed NKA, Ahmad MK, Hairom NHH et al. (2020) Dependence of photocatalysis on electron trapping in Ag-doped flowerlike rutile-phase TiO2 film by facile hydrothermal method. Appl Surf Sci 534:147571. https://doi.org/10.1016/j.apsusc.2020.147571

    Article  CAS  Google Scholar 

  31. Lin X, Sun M, Gao B et al. (2021) Hydrothermally regulating phase composition of TiO2 nanocrystals toward high photocatalytic activity. J Alloys Compd 850:156653. https://doi.org/10.1016/j.jallcom.2020.156653

    Article  CAS  Google Scholar 

  32. Mamun K, Asw R, Fahmida K (2017) Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl Water Sci 7:1569–1578. https://doi.org/10.1007/s13201-015-0367-y

    Article  CAS  Google Scholar 

  33. Ling CM, Mohamed AR, Bhatia S (2004) Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream. Chemosphere 57:547–554. https://doi.org/10.1016/j.chemosphere.2004.07.011

    Article  CAS  Google Scholar 

  34. Lai Z, Peng F, Wang H et al. (2013) A new insight into regulating high energy facets of rutile TiO2. J Mater Chem A 1–4. https://doi.org/10.1039/c3ta00188a

  35. Meng X, Shin D, Yu SM et al. (2014) Formation mechanism of Rutile TiO2 rods on fluorine doped tin oxide. J Nanosci Nanotechnol 14:8839–8844. https://doi.org/10.1166/jnn.2014.10016

    Article  CAS  Google Scholar 

  36. Huyen T, Chi T, Dung N et al. (2018) Enhanced photocatalytic activity of {110}-faceted TiO2 rutile nanorods in the photodegradation of hazardous pharmaceuticals. Nanomaterials 8:276. https://doi.org/10.3390/nano8050276

    Article  CAS  Google Scholar 

  37. Yusoff MM, Mamat MH, Ismail AS et al. (2018) Enhancing the performance of self-powered ultraviolet photosensor using rapid aqueous chemical-grown aluminum-doped titanium oxide nanorod arrays as electron transport layer. Thin Solid Films 655:1–12. https://doi.org/10.1016/j.tsf.2018.03.091

    Article  CAS  Google Scholar 

  38. Mathews NR, Morales ER, Cortés-Jacome MA, Toledo Antonio JA (2009) TiO2 thin films – Influence of annealing temperature on structural, optical and photocatalytic properties. Sol Energy 83:1499–1508. https://doi.org/10.1016/j.solener.2009.04.008

    Article  CAS  Google Scholar 

  39. Santara B, Giri PK, Imakita K, Fujii M (2014) Microscopic origin of lattice contraction and expansion in undoped Rutile TiO2 nanostructures. J Phys D Appl Phys 47:215302

    Article  Google Scholar 

  40. Ahmad MK, Mokhtar SM, Soon CF et al. (2016) Raman investigation of rutile-phased TiO2 nanorods/nanoflowers with various reaction times using one step hydrothermal method. J Mater Sci Mater Electron 27:7920–7926. https://doi.org/10.1007/s10854-016-4783-z

    Article  CAS  Google Scholar 

  41. Hernandes J.V, Coste S, García A (2017) Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO2 Journal of Alloys and Compound 710:355–363. https://doi.org/10.1016/j.jallcom.2017.03.275

    Article  CAS  Google Scholar 

  42. Khan MM, Ansari SA, Pradhan D et al. (2014) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem 2:637–644. https://doi.org/10.1039/c3ta14052k

    Article  CAS  Google Scholar 

  43. Zuo F, Bozhilov K, Dillon RJ et al. (2012) Active facets on titanium (III)-doped TiO2: an effective strategy to improve the visible-light photocatalytic activity. Angew Chemie Int Ed 51:6223–6226. https://doi.org/10.1002/anie.201202191

    Article  CAS  Google Scholar 

  44. Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol C Photochem Rev 15:1–20. https://doi.org/10.1016/j.jphotochemrev.2012.10.001

    Article  CAS  Google Scholar 

  45. Daviosdóttir S, Dirscherl K, Canulescu S et al. (2013) Nanoscale surface potential imaging of the photocatalytic TiO2 films on aluminum. RSC Adv 3:23296–23302. https://doi.org/10.1039/c3ra43082k

    Article  CAS  Google Scholar 

  46. Lai YK, Sun L, Chen C et al. (2005) Optical and electrical characterization of TiO2 nanotube arrays on titanium substrate. 252:1101–1106. https://doi.org/10.1016/j.apsusc.2005.02.035

  47. Mathew S, Prasad AK, Benoy T et al. (2012) UV-visible photoluminescence of TiO2 nanoparticles prepared by hydrothermal method. J Fluoresc 22:1563–1569. https://doi.org/10.1007/s10895-012-1096-3

    Article  CAS  Google Scholar 

  48. Xiong L, Li J, Yang B, Yu Y (2012) Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. J Nanomater. https://doi.org/10.1155/2012/831524

  49. Pan X, Yang M, Zhang N (2013) Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 5:3601–3614. https://doi.org/10.1039/c3nr00476g

    Article  CAS  Google Scholar 

  50. Rajabi M, Shogh S, Iraji Zad A (2015) Defect study of TiO2 nanorods grown by a hydrothermal method through photoluminescence spectroscopy. J Lumin 157:235–242. https://doi.org/10.1016/j.jlumin.2014.08.035

    Article  CAS  Google Scholar 

  51. Pauly TR, Liu Y, Pinnavaia TJ et al. (1999) Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures. J Am Chem Soc 121:8835–8842

    Article  CAS  Google Scholar 

  52. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev 13:169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  CAS  Google Scholar 

  53. Harish S, Archana J, Navaneethan M et al. (2016) Enhanced visible light induced photocatalytic activity on the degradation of organic pollutants by SnO nanoparticle decorated hierarchical ZnO nanostructures. RSC Adv 6:89721–89731. https://doi.org/10.1039/c6ra19824d

    Article  CAS  Google Scholar 

  54. Cavigli L, Bogani F, Vinattieri A et al. (2009) Volume versus surface-mediated recombination in anatase TiO2 nanoparticles. J Appl Phys 106:053516. https://doi.org/10.1063/1.3211291

    Article  CAS  Google Scholar 

  55. Mustapha F, Jalil AA, Mohamed M et al. (2017) New insight into self-modified surfaces with defect-rich rutile TiO2 as a visible-light-driven photocatalyst new insight into self-modified surfaces with defect-rich rutile TiO2 as a visible-light-driven photocatalyst. J Clean Prod 168:1150–1162. https://doi.org/10.1016/j.jclepro.2017.09.095

    Article  CAS  Google Scholar 

  56. Sabarinathan M, Harish S, Archana J et al. (2016) Controlled exfoliation of monodispersed MoS2 layered nanostructures by a ligand-assisted hydrothermal approach for the realization of ultrafast degradation of an organic pollutant. RSC Adv 6:109495–109505. https://doi.org/10.1039/c6ra24355j

    Article  CAS  Google Scholar 

  57. Franco Arias LM, Arias Duran A, Cardona D, Camps E, Gómez GZ ME (2015) Effect of annealing treatment on the photocatalytic activity of TiO2 thin films deposited by dc reactive magnetron sputtering. J Phys 614:1–6. https://doi.org/10.1088/1742-6596/614/1/012008

    Article  CAS  Google Scholar 

  58. Dulian P, Nachit W, Jaglarz J et al. (2019) Photocatalytic methylene blue degradation on multilayer transparent TiO2 coatings. Opt Mater (Amst) 90:264–272. https://doi.org/10.1016/j.optmat.2019.02.041

    Article  CAS  Google Scholar 

  59. Retamoso C, Escalona N, González M et al. (2019) Effect of particle size on the photocatalytic activity of modified rutile sand (TiO2) for the discoloration of methylene blue in water. J Photochem Photobiol A Chem 378:136–141. https://doi.org/10.1016/j.jphotochem.2019.04.021

    Article  CAS  Google Scholar 

  60. Sun Y, Qian J, Zhao QR et al. (2021) Hydrothermal synthesis of rutile TiO2 nanotubes film on Ti foil for photocatalytic degradation. Dig J Nanomater Biostructures 16:579–584

    Google Scholar 

  61. Hamed NKA, Ahmad MK, Mazlan MH et al. (2019) Low temperature fabrication of flower-like rutile phased TiO2 film towards methyl orange degradation. Int J Eng Technol 8:49–55

    CAS  Google Scholar 

  62. Ahmad MK, Fitrah A, Aziz A et al. (2017) Rutile phased titanium dioxide (TiO2) nanorod/nano flower based waste water treatment device. https://doi.org/10.1007/978-3-319-46490-9

Download references

Acknowledgements

The authors would like to thank the Ministry of Higher Education for the financial support under the Fundamental Research Grant Scheme (FRGS) number: FRGS/1/2020/STG05/UTHM/02/4. The authors would also like to thank the Centre for Instrumental Analysis, Shizuoka University, Hamamatsu, Japan for the characterisation equipment.

Author contribution

N.K.A.H.: investigation and writing—original draft. M.K.A.: conceptualisation and supervision. N.H.H.H.: formal analysis and validation. A.B.F.: writing—review and editing and resources. A.B.S. and S.M.M.: conceptualisation and methodology. M.H.M.: writing—review and editing, and validation. M.S.: conceptualisation and supervision. F.I.M.F.: conceptualisation. A.M.: writing—editing. A.M.: validation. M.F.M.S.: writing—review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Ahmad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamed, N.K.A., Ahmad, M.K., Hairom, N.H.H. et al. Photocatalytic degradation of methylene blue by flowerlike rutile-phase TiO2 film grown via hydrothermal method. J Sol-Gel Sci Technol 102, 637–648 (2022). https://doi.org/10.1007/s10971-021-05691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05691-y

Keywords

Navigation