Skip to main content

Advertisement

Log in

Photocatalytic TiO2 thin films and coatings prepared by sol–gel processing: a brief review

  • Review Paper: Sol–gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The use of nanostructured coatings is crucial to maintain clean surfaces in public transport, shopping malls, parks, and hospitals. Megacities produce large amounts of pollutants in water and air, making it necessary to develop strategies to prevent diseases caused by accumulation of organic compounds, bacteria, viruses, and other harmful microorganisms on surfaces. This concise review analyzes the fundamental deposition techniques based on the sol–gel process for the preparation of TiO2 films and coatings. In this regard, methodologies such as dip-coating, spin coating, spray pyrolysis, and electrophoretic sol–gel deposition are reviewed in detail. Outstanding properties such as chemical stability, reusability, hydrophilicity, and activation by sunlight or simulated solar radiation position these TiO2 thin films and coatings as a suitable technology for commercial devices that keep public surfaces clean. Environmental and energy applications including water and air purification, gas sensing, production of renewable fuels from water splitting and CO2 photoreduction, as well as antimicrobial features of the sol–gel-based TiO2 coatings can be considered as potential and valuable strategies to control pollution in the actual worldwide societies.

Highlights

  • Sol–gel methodologies are essential techniques for preparation of TiO2 thin films and coatings.

  • Dip/spin coating, spray pyrolysis and electrophoretic sol–gel deposition are reviewed in detail.

  • Physical and chemical properties of TiO2 films are modified according to the sol–gel methodology.

  • Several photocatalytic applications of TiO2 films derived from sol–gel techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gonzalez RD, Lopez T, Gómez R (1997) Sol–gel preparation of supported metal catalysts. Catal Today 35:293–317. https://doi.org/10.1016/S0920-5861(96)00162-9

    Article  CAS  Google Scholar 

  2. Espinoza-Silva CV (2015) Síntesis de nanopartículas de SiO2 como potenciales vehículos para administración de fármacos, tesis. https://ipicyt.repositorioinstitucional.mx/jspui/bitstream/1010/1529/1/TMIPICYTE8S52015.pdf

  3. Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46:3669–3686. https://doi.org/10.1007/s10853-011-5378-y

    Article  CAS  Google Scholar 

  4. Rodríguez-González V, Alfaro SO, Torres-Martínez LM, Cho SH, Lee SW (2010) Silver-TiO2 nanocomposites: synthesis and harmful algae bloom UV-photoelimination. Appl Catal B Environ 98:229–234. https://doi.org/10.1016/j.apcatb.2010.06.001

    Article  CAS  Google Scholar 

  5. Moussaoui R, Elghniji K, Mosbah MB, Elaloui E, Moussaoui Y (2017) Sol–gel synthesis of highly TiO2 aerogel photocatalyst via high temperature supercritical drying. J Saudi Chem Soc 21:751–760. https://doi.org/10.1016/j.jscs.2017.04.001

    Article  CAS  Google Scholar 

  6. Zhao Z, Jiao X, Chen D (2009) Preparation of TiO2 aerogels by a sol–gel combined solvothermal route. J Mater Chem 19:3078–3083. https://doi.org/10.1039/B819849G

    Article  CAS  Google Scholar 

  7. Isley SL, Penn RL (2008) Titanium dioxide nanoparticles: effect of sol–gel pH on phase composition, particle size, and particle growth mechanism. J Phys Chem C 112:4469–4474. https://doi.org/10.1021/jp710844d

    Article  CAS  Google Scholar 

  8. Jasbi NE, Dorranian D (2016) Effect of aging on the properties of TiO2 nanoparticle. J Theor Appl Phys 10:157–161. https://doi.org/10.1007/s40094-016-0212-1

    Article  Google Scholar 

  9. Lee HJ, Hahn SH, Kim EJ, You YZ (2004) Influence of calcination temperature on structural and optical properties of TiO2-SiO2 thin films prepared by sol–gel dip coating. J Mater Sci 39:3683–3688. https://doi.org/10.1023/B:JMSC.0000030721.88503.c1

    Article  CAS  Google Scholar 

  10. Kayani ZN, Rahim S, Sagheer R, Riaz S, Naseem S (2020) Assessment of antibacterial and optical features of sol–gel dip coated La doped TiO2 thin films. Mater Chem Phys 250:123217. https://doi.org/10.1016/j.matchemphys.2020.123217

    Article  CAS  Google Scholar 

  11. Kayani ZN, Riaz S, Naseem S (2020) Magnetic and antibacterial studies of sol–gel dip coated Ce doped TiO2 thin films: Influence of Ce contents. Ceram Int 46:381–390. https://doi.org/10.1016/j.ceramint.2019.08.272

    Article  CAS  Google Scholar 

  12. Woo-Garcia RM, García-González L, Argüelles-Lucho P, Guarneros-Aguilar C, Cervantes B, Herrera-May AL, López-Huerta F (2020) Synthesis and characterization of thin TiO2 films using the sol–gel dip coating method. IOP Confer Ser: Mater Sci Eng 908:012007. https://doi.org/10.1088/1757-899X/908/1/012007

    Article  CAS  Google Scholar 

  13. Sarah MSP, Hasmi BAM, Shariffudin SS, Hashim H, Herman SH (2018) Crack-free TiO2 thin film via sol–gel dip coating method: investigation on molarity effect. IOP Confer Ser: Mater Sci Eng 340:012009. https://doi.org/10.1088/1757-899X/340/1/012009

    Article  Google Scholar 

  14. Yazid SA, Rosli ZM, Juoi JM, Johari ND (2018) Raman spectroscopy and XRD investigation on TiO2 sol–gel dip coating thin films synthesizes with and without solvents. MATEC Web Confer 150:04007. https://doi.org/10.1051/matecconf/201815004007

    Article  CAS  Google Scholar 

  15. Manickam K, Muthusamy V, Manickam S, Senthil TS, Periyasamy G, Shanmugam S (2020) Effect of annealing temperature on structural, morphological and optical properties of nanocrystalline TiO2 thin films synthesized by sol–gel dip coating method. Mater Today Proc 23:68–72. https://doi.org/10.1016/j.matpr.2019.06.651

    Article  CAS  Google Scholar 

  16. Barati N, Sani MAF, Ghasemi H, Sadeghian Z, Mirhoseini SMM (2009) Preparation of uniform TiO2 nanostructure film on 316L stainless steel by sol–gel dip coating. Appl Surf Sci 255:8328–8333. https://doi.org/10.1016/j.apsusc.2009.05.048

    Article  CAS  Google Scholar 

  17. Blanco E, Domínguez M, González-Leal JM, Márquez E, Outón J, Ramírez-del-Solar M (2018) Insights into the annealing process of sol–gel TiO2 films leading to anatase development: The interrelationship between microstructure and optical properties. Appl Surf Sci 439:736–748. https://doi.org/10.1016/j.apsusc.2018.01.058

    Article  CAS  Google Scholar 

  18. Singh D, Singh N, Sharma SD, Kant C, Sharma CP, Pandey RR, Saini KK (2011) Bandgap modification of TiO2 sol–gel films by Fe and Ni doping J Sol–Gel Sci Technol 58:269–276. https://doi.org/10.1007/s10971-010-2387-2

    Article  CAS  Google Scholar 

  19. Tian B, Wang X, Niu Y, Zhang J, Zhang Q, Zhang Z, Wu G, Zhou B, Shen J (2016) Preparation and stress evolution of sol–gel SiO2 antireflective coatings for small-size anisotropic lithium triborate crystals. AIP Adv 6:045208. https://doi.org/10.1063/1.4947135

    Article  CAS  Google Scholar 

  20. Elfanaoui A, Elhamri E, Boulkaddat L, Ihlal A, Bouabid K, Laanab L, Taleb A, Portier X (2011) Optical and structural properties of TiO2 thin films prepared by sol–gel spin coating. Int J Hydrog Energy 36:4130–4133. https://doi.org/10.1016/j.ijhydene.2010.07.057

    Article  CAS  Google Scholar 

  21. Yilbas BS, Al-Sharafi A, Ali H (2019) Self-cleaning of surfaces and water droplet mobility. Elsevier, Netherlands

  22. Komaraiah D, Radha E, Sivakumar J, Reddy MVR, Sayanna R (2019) Structural, optical properties and photocatalytic activity of Fe3+ doped TiO2 thin films deposited by sol–gel spin coating. Surf Interfaces 17:100368. https://doi.org/10.1016/j.surfin.2019.100368

    Article  CAS  Google Scholar 

  23. Meher SR, Balakrishnan L (2014) Sol–gel derived nanocrystalline TiO2 thin films: a promising candidate for self-cleaning smart window applications. Mater Sci Semicon Proc 26:251–258. https://doi.org/10.1016/j.mssp.2014.05.006

    Article  CAS  Google Scholar 

  24. Lin HJ, Yang TS, Hsi CS, Wang MC, Lee KC (2014) Optical and photocatalytic properties of Fe3+-doped TiO2 thin films prepared by a sol–gel spin coating. Ceram Int 40:10633–10640. https://doi.org/10.1016/j.ceramint.2014.03.046

    Article  CAS  Google Scholar 

  25. Wu CY, Lee YL, Lo YS, Lin CJ, Wu CH (2013) Thickness-dependent photocatalytic performance of nanocrystalline TiO2 thin films prepared by sol–gel spin coating. Appl Surf Sci 280:737–744. https://doi.org/10.1016/j.apsusc.2013.05.053

    Article  CAS  Google Scholar 

  26. Messemeche R, Saidi H, Attaf A, Benkhetta Y, Chala S, Azizi R, Nouadji R (2020) Elaboration and characterization of nano-crystalline layers of transparent titanium dioxide (Anatase-TiO2) deposited by a sol–gel (spin coating) process. Surf Interfaces 19:100482. https://doi.org/10.1016/j.surfin.2020.100482

    Article  CAS  Google Scholar 

  27. Johari ND, Rosli ZM, Juoi JM, Yazid SA (2019) Comparison on the TiO2 crystalline phases deposited via dip and spin coating using green sol–gel route. J Mater Res Technol 8:2350–2358. https://doi.org/10.1016/j.jmrt.2019.04.018

    Article  CAS  Google Scholar 

  28. Oja I, Mere A, Krunks M, Nisumaa R, Solterbeck CH, Es-Souni M (2006) Structural and electrical characterization of TiO2 films grown by spray pyrolysis. Thin Solid Films 515:674–677. https://doi.org/10.1016/j.tsf.2005.12.243

    Article  CAS  Google Scholar 

  29. Dhanapandian S, Arunachalam A, Manoharan C (2016) Effect of deposition parameters on the properties of TiO2 thin films prepared by spray pyrolysis. J Sol–Gel Sci Technol 77:119–135. https://doi.org/10.1007/s10971-015-3836-8

    Article  CAS  Google Scholar 

  30. Doubi Y, Hartiti B, Hicham L, Fadili S, Batan A, Tahri M, Belfhaili A, Thevnin P (2020) Effect of annealing time on structural and optical proprieties of TiO2 thin films elaborated by spray pyrolysis technique for future gas sensor application. Mater Today Proc 30:823–827. https://doi.org/10.1016/j.matpr.2020.04.186

    Article  CAS  Google Scholar 

  31. Attouche H, Rahmane S, Hettal S, Kouidri N (2020) Precursor nature and molarities effect on the optical, structural, morphological, and electrical properties of TiO2 thin films deposited by spray pyrolysis. Optik 203:163985. https://doi.org/10.1016/j.ijleo.2019.163985

    Article  CAS  Google Scholar 

  32. Azizi KF, Mohagheghi MMB (2017) The effect of solution flow rate and substrate temperature on structural and optical properties of TiO2 films deposited by spray pyrolysis technique. Thin Solid Films 621:98–101. https://doi.org/10.1016/j.tsf.2016.11.040

    Article  CAS  Google Scholar 

  33. Krishnan VG, Ravikumar N, Dilip R, Elango P (2020) Gas sensing nature and characterization of Zr doped TiO2 films prepared by automated nebulizer spray pyrolysis technique. Optik 206:164347. https://doi.org/10.1016/j.ijleo.2020.164347

    Article  CAS  Google Scholar 

  34. Acik IO, Kiisk V, Krunks M, Sildos I, Junolainen A, Danilson M, Mere A, Mikli V (2012) Characterisation of samarium and nitrogen co-doped TiO2 films prepared by chemical spray pyrolysis. Appl Surf Sci 261:735–741. https://doi.org/10.1016/j.apsusc.2012.08.090

    Article  CAS  Google Scholar 

  35. Obregón S, Amor G, Vázquez A (2019) Electrophoretic deposition of photocatalytic materials. Adv Colloid Interface Sci 269:236–255. https://doi.org/10.1016/j.cis.2019.05.003

    Article  CAS  Google Scholar 

  36. Taheri M, Abdizadeh H, Golobostanfard MR (2017) Formation of urchin-like ZnO nanostructures by sol–gel electrophoretic deposition for photocatalytic application. J Alloys Compd 725:291–301. https://doi.org/10.1016/j.jallcom.2017.07.173

    Article  CAS  Google Scholar 

  37. Guo X, Li X, Lai C, Li W, Zhang D, Xiong Z (2015) Cathodic electrophoretic deposition of bismuth oxide (Bi2O3) coatings and their photocatalytic activities. Appl Surf Sci 331:455–462. https://doi.org/10.1016/j.apsusc.2015.01.034

    Article  CAS  Google Scholar 

  38. Hernández-Uresti DB, Vázquez A, Obregón S, Ruiz-Gómez MA (2017) Novel g-C3N4 photocatalytic coatings with spearhead-like morphology prepared by an electrophoretic deposition route. Mater Lett 200:59–62. https://doi.org/10.1016/j.matlet.2017.04.097

    Article  CAS  Google Scholar 

  39. Lin WC, Chen CH, Tang HY, Hsiao YC, Pan JR, Hu CC, Huang C (2013) Electrochemical photocatalytic degradation of dye solution with a TiO2-coated stainless steel electrode prepared by electrophoretic deposition. Appl Catal B Environ 140-141:32–41. https://doi.org/10.1016/j.apcatb.2013.03.032

    Article  CAS  Google Scholar 

  40. Mohammadi MM, Vossoughi M, Feilizadeh M, Rashtchian D, Moradi S, Alemzadeh I (2014) Effects of electrophoretic deposition parameters on the photocatalytic activity of TiO2 films: optimization by response surface methodology. Colloid Surf A - Physicochem Eng Asp 452:1–8. https://doi.org/10.1016/j.colsurfa.2014.03.048

    Article  CAS  Google Scholar 

  41. Katagiri K, Tanaka Y, Uemura K, Inumaru K, Seki T, Takeoka Y (2017) Structural color coating films composed of an amorphous array of colloidal particles via electrophoretic deposition. NPG Asia Mater 9:e355. https://doi.org/10.1038/am.2017.13

    Article  CAS  Google Scholar 

  42. Matsuda A, Tatsumisago M (2018) In: Klein L, Aparicio M, Jitianu A (eds) Handbook of Sol–Gel Science and Technology, 1st edn. Springer, Cham. https://doi.org/10.1007/978-3-319-32101-1_14

  43. Hallajzadeh AM, Abdizadeh H, Taheri M, Golobostanfard MR (2018) Growth of ZnO films in sol–gel electrophoretic deposition by different solvents. AIP Confer Proc 1920:020034. https://doi.org/10.1063/1.5018966

    Article  CAS  Google Scholar 

  44. Borlaf M, Colomer MT, Cabello F, Serna R, Moreno R (2012) Electrophoretic deposition of TiO2/Er3+ nanoparticulate sols. J Phys Chem B 117:1556–1562. https://doi.org/10.1021/jp304044w

    Article  CAS  Google Scholar 

  45. Jouenne V, Duvail JL, Brohan L, Gautron E, Richard-Plouet M (2015) Low-temperature synthesis and electrophoretic deposition of shape-controlled titanium dioxide nanocrystals. RSC Adv 5:15118–15125. https://doi.org/10.1039/C4RA15736B

    Article  CAS  Google Scholar 

  46. Schiemann D, Alphonse P, Taberna PL (2013) Synthesis of high surface area TiO2 coatings on stainless steel by electrophoretic deposition. J Mater Res 28:2023–2030. https://doi.org/10.1557/jmr.2013.169

    Article  CAS  Google Scholar 

  47. Borlaf M, Colomer MT, TitzeL H, Dickerson JH, Moreno R (2012) Thin films of europium(III) doped-TiO2 prepared by electrophoretic deposition from nanoparticulate sols. Key Eng Mater 507:73–77. https://doi.org/10.4028/www.scientific.net/KEM.507.73

  48. Frantz C, Lauria A, Manzano CV, Guerra-Nuñez C, Niederberger M, Storrer C, Michler J, Philippe LV (2017) Nonaqueous sol–gel synthesis of anatase nanoparticles and their electrophoretic deposition in porous alumina. Langmuir 33:12404–12418. https://doi.org/10.1021/acs.langmuir.7b02103

    Article  CAS  Google Scholar 

  49. Nourmohammadi A, Hietschold M (2010) Template-based electrophoretic growth of PbZrO3 nanotubes. J Sol–Gel Sci Technol 53:342–346. https://doi.org/10.1007/s10971-009-2097-9

    Article  CAS  Google Scholar 

  50. Limmer SJ, Cao G (2003) Sol–gel electrophoretic deposition for the growth of oxide nanorods. Adv Mater 15:427–431. https://doi.org/10.1002/adma.200390099

    Article  CAS  Google Scholar 

  51. Lin Y, Wu GS, Yuan XY, Zhang LD (2003) Fabrication and optical properties of TiO2 nanowire arrays made by sol–gel electrophoresis deposition into anodic alumina membranes. J Phys: Condens Matter 15:2917–2922. https://doi.org/10.1088/0953-8984/15/17/339

    Article  CAS  Google Scholar 

  52. Wang R, Wang XW, Xin JH (2010) Advanced visible-light-driven self-cleaning cotton by Au/TiO2/SiO2 photocatalysts. ACS Appl Inter Mater Interfaces 2:82–85. https://doi.org/10.1021/am900588s

    Article  CAS  Google Scholar 

  53. Ahmad I, Kan C, Yao Z (2019) Photoactive cotton fabric for UV protection and self-cleaning. RSC Adv 9:18106–18114. https://doi.org/10.1039/C9RA02023C

    Article  CAS  Google Scholar 

  54. Yan L, Li Z, Sun M, Shen G, Li L (2016) Stable and flexible CuInS2/ZnS:Al-TiO2 film for solar-light-driven photodegradation of soil fumigant. ACS Appl Mater Interfaces 8:20048–20056. https://doi.org/10.1021/acsami.6b05587

    Article  CAS  Google Scholar 

  55. Zhang Y, Li J, Wang J (2006) Substrate-assisted crystallization and photocatalytic properties of mesoporous TiO2 thin films. Chem Mater 18:2917–2923. https://doi.org/10.1021/cm060450b

    Article  CAS  Google Scholar 

  56. Laisney J, Rosset A, Bartolomei V, Pedroi D, Truffier-Boutry D, Artous S, Berge V, Brochard G, Michaud-Soret I (2021) TiO2 nanoparticles coated with bio-inspired ligands for the safer-by-design development of photocatalytic paints. Environ Sci Nano 8:297–310. https://doi.org/10.1039/D0EN00947D

    Article  CAS  Google Scholar 

  57. Ghamsari MS, Bahramian AR (2008) High transparent sol–gel derived nanostructured TiO2 thin film. Mater Lett 62:361–364. https://doi.org/10.1016/j.matlet.2007.05.053

    Article  CAS  Google Scholar 

  58. Xu J, Nagasawa H, Kanezashi M, Tsuru T (2018) UV-protective TiO2 thin films with high transparency in visible light region fabricated via atmospheric-pressure plasma-enhanced chemical vapor deposition. ACS Appl Mater Interfaces 10:42657–42665. https://doi.org/10.1021/acsami.8b15572

    Article  CAS  Google Scholar 

  59. Li L, Zhang P, Wang WM, Lin H, Zerdoum AB, Geiger SJ, Liu Y, Xiao N, Zou Y, Ogbuu O, Du Q, Jia X, Hu J (2015) Foldable and cytocompatible sol–gel TiO2 photonics. Sci Rep 5:13832. https://doi.org/10.1038/srep13832

    Article  Google Scholar 

  60. Ilkhechi NN, Ghorbani M, Mozammel M, Khajeh M (2017) The optical, photo catalytic behavior and hydrophilic properties of silver and tin co doped TiO2 thin films using sol–gel method. J Mater Sci: Mater Electron 28:3571–3580. https://doi.org/10.1007/s10854-016-5958-3

    Article  CAS  Google Scholar 

  61. Geyer F, D’Acunzi M, Sharifi-Aghili A, Saal A, Gao N, Kaltbeitzel A, Sloot TF, Berger R, Butt HJ, Vollmer D (2020) When and how self-cleaning of superhydrophobic surfaces works. Sci Adv 6:eaaw9727. https://doi.org/10.1126/sciadv.aaw9727

    Article  CAS  Google Scholar 

  62. Sun R, Nakajima A, Fujishima A, Watanabe T, Hashimoto K (2001) Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J Phys Chem B 105:1984–1990. https://doi.org/10.1021/jp002525j

    Article  CAS  Google Scholar 

  63. Sakai N, Fujishima A, Watanabe T, Hashimoto K (2001) Enhancement of the photoinduced hydrophilic conversion rate of TiO2 film electrode surfaces by anodic polarization. J Phys Chem B 105:3023–3026. https://doi.org/10.1021/jp003212r

    Article  CAS  Google Scholar 

  64. Jiang Y, Shi K, Tang H, Wang Y (2019) Enhanced wettability and wear resistance on TiO2/PDA thin films prepared by sol–gel dip coating. Surf Coat Technol 375:334–340. https://doi.org/10.1016/j.surfcoat.2019.07.051

    Article  CAS  Google Scholar 

  65. Abad SNK, Ilkhechi NN, Adel M, Mozammel M (2020) Hierarchical architecture of a superhydrophobic Cd-Si co-doped TiO2 thin film. Appl Surf Sci 533:147495. https://doi.org/10.1016/j.apsusc.2020.147495

    Article  CAS  Google Scholar 

  66. Duan Z, Zhu Y, Ren P, Jia J, Yang S, Zhao G, Xie Y, Zhang J (2018) Non-UV activated superhydrophilicity of patterned Fe-doped TiO2 film for anti-fogging and photocatalysis. Appl Surf Sci 452(2018):165–173. https://doi.org/10.1016/j.apsusc.2018.05.029

    Article  CAS  Google Scholar 

  67. Moongraksathum B, Shang JY, Chen YW (2018) Photocatalytic antibacterial effectiveness of Cu-doped TiO2 thin film prepared via the peroxo sol–gel method. Catalysts 8:352. https://doi.org/10.3390/catal8090352

    Article  CAS  Google Scholar 

  68. Sun R, Chen Z, Peng J, Zheng T (2018) The effect mechanisms of pH, complexant and calcination temperature on the hydrophilicity of TiO2 films prepared by the sol–gel method. Appl Surf Sci 462:480–488. https://doi.org/10.1016/j.apsusc.2018.08.163

    Article  CAS  Google Scholar 

  69. Çelik A, Acar MT, Yetim T, Kovacı H, Yetim AF (2020) Improving structural, tribological and electrochemical properties of Ti6Al4V alloy with B-doped TiO2 thin films. Tribol Int 146:106210. https://doi.org/10.1016/j.triboint.2020.106210

    Article  CAS  Google Scholar 

  70. Crişan M, Mardare D, Ianculescu A, Drăgan N, Niţoi I, Crişan D, Voicescu M, Todan L, Oancea P, Adomniţei C, Dobromir M, Gabrovska M, Vasile B (2018) Iron doped TiO2 films and their photoactivity in nitrobenzene removal from water. Appl Surf Sci 455:201–215. https://doi.org/10.1016/j.apsusc.2018.05.124

    Article  CAS  Google Scholar 

  71. Deblonde T, Cossu-Leguille, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214:442–448. https://doi.org/10.1016/j.ijheh.2011.08.002

    Article  CAS  Google Scholar 

  72. Miranda-García N, Suárez S, Sánchez B, Coronado JM, Malato S, Maldonado MI (2011) Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl Catal B Environ 103:294–301. https://doi.org/10.1016/j.apcatb.2011.01.030

    Article  CAS  Google Scholar 

  73. Rueda-Marquez JJ, Levchuk I, Ibañez PF, Sillanpää (2020) A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J Clean Prod 258:120694. https://doi.org/10.1016/j.jclepro.2020.120694

    Article  CAS  Google Scholar 

  74. Kubacka A, Fernández-García M, Colón G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614. https://doi.org/10.1021/cr100454n

    Article  CAS  Google Scholar 

  75. Yu HF, Wang CW (2011) Photocatalysis and characterization of the gel-derived TiO2 and P-TiO2 transparent thin films. Thin Solid Films 519:6453–6458. https://doi.org/10.1016/j.tsf.2011.04.230

    Article  CAS  Google Scholar 

  76. Pérez-González M, Tomás SA, Santoyo-Salazar J, Gallardo-Hernández S, Tellez-Cruz MM, Solorza-Feria O (2019) Sol–gel synthesis of Ag-loaded TiO2-ZnO thin films with enhanced photocatalytic activity. J Alloys Compd 779:908–917. https://doi.org/10.1016/j.jallcom.2018.11.302

    Article  CAS  Google Scholar 

  77. Radić N, Grbić B, Petrović S, Stojadinović S, Tadić N, Stefanov P (2020) Effect of cerium oxide doping on the photocatalytic properties of rutile TiO2 films prepared by spray pyrolysis. Phys B Condens Matter 599:412544. https://doi.org/10.1016/j.physb.2020.412544

    Article  CAS  Google Scholar 

  78. Bensouici F, Bououdina M, Dakhel AA, Tala-Ighil R, Tounane M, Iratni A, Souier T, Liu S, Cai W (2017) Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films. Appl surf Sci 395:110–116. https://doi.org/10.1016/j.apsusc.2016.07.034

    Article  CAS  Google Scholar 

  79. Ćurković L, Ljubas D, Šegota S, Bačić I (2014) Photocatalytic degradation of Lissamine Green B dye by using nanostructured sol–gel TiO2 films. J Alloys Compd 604:309–316. https://doi.org/10.1016/j.jallcom.2014.03.148

    Article  CAS  Google Scholar 

  80. Komaraiah D, Radha E, Sivakumar J, Reddy MVR, Sayanna R (2020) Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films. Opt Mater 108:110401. https://doi.org/10.1016/j.optmat.2020.110401

    Article  CAS  Google Scholar 

  81. Mamane H, Horovitz I, Lozzi L, Camillo DD, Avisar D (2014) The role of physical and operational parameters in photocatalysis by N-doped TiO2 sol–gel thin films. Chem Eng J 257:159–169. https://doi.org/10.1016/j.cej.2014.07.018

    Article  CAS  Google Scholar 

  82. Li QH, Dong M, Li R, Cui YQ, Xie GX, Wang XX, Long YZ (2021) Enhancement of Cr(VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C3N4/TiO2 nanofibers. Carbohydr Polym 253:117200. https://doi.org/10.1016/j.carbpol.2020.117200

    Article  CAS  Google Scholar 

  83. Zhao B, Zhang K, Huang Y, Wang Q, Xu H, Wang Y, Li J, Song T, Xia W, Liu J (2021) A novel visible light-driven TiO2 photocatalytic reduction for hexavalent chromium wastewater and mechanism. Water Sci Technol 83:2135–2145. https://doi.org/10.2166/wst.2021.116

    Article  CAS  Google Scholar 

  84. Kajitvichyanukul P, Ananpattarachai J, Pongpom S (2005) Sol–gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process. Sci Technol Adv Mater 6:352–358. https://doi.org/10.1016/j.stam.2005.02.014

    Article  CAS  Google Scholar 

  85. Obregón S, Mendoza-Reséndez R, Luna C (2017) Facile synthesis of ultrafine akaganeite nanoparticles for the removal of hexavalent chromium: adsorption properties, isotherm and kinetics. J Nanosci Nanotechnol 17:4471–4479. https://doi.org/10.1166/jnn.2017.14198

    Article  CAS  Google Scholar 

  86. Ghanbari S, Givianrad MH, Azar PA (2019) Synthesis of N-F-codoped TiO2/SiO2 nanocomposites as a visible and sunlight response photocatalyst for simultaneous degradation of organic water pollutants and reduction of Cr (VI). J Sol–Gel Sci Technol 89:562–570. https://doi.org/10.1007/s10971-018-4899-0

    Article  CAS  Google Scholar 

  87. Samadi S, Khalilian F, Tabatabaee A (2014) Synthesis, characterization and application of Cu-TiO2/chitosan nanocomposite thin film for the removal of some heavy metals from aquatic media. J Nanostruct Chem 4:84. https://doi.org/10.1007/s40097-014-0084-3

    Article  Google Scholar 

  88. Colón G (2016) Towards the hydrogen production by photocatalysis. Appl Catal A Gen 518:48–59. https://doi.org/10.1016/j.apcata.2015.11.042

    Article  CAS  Google Scholar 

  89. Murdoch M, Waterhouse GIN, Nadeem MA, Metson JB, Keane MA, Howe RF, Llorca J, Idriss H (2011) The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nature Chem 3:489–492. https://doi.org/10.1038/nchem.1048

    Article  CAS  Google Scholar 

  90. Deák P, Kullgren J, Aradi B, Frauenheim T, Kavan L (2016) Water splitting and the band edge positions of TiO2. Electrochim Acta 199:27–34. https://doi.org/10.1016/j.electacta.2016.03.122

    Article  CAS  Google Scholar 

  91. Zhang D, Dong S (2019) Challenges in band alignment between semiconducting materials: a case of rutile and anatase TiO2. Prog Nat Sci: Mater Int 29:277–284. https://doi.org/10.1016/j.pnsc.2019.03.012

    Article  CAS  Google Scholar 

  92. Pulido Melián E, Nereida Suárez M, Jardiel T, Calatayud DG, del Campo A, Doña-Rodríguez JM, Araña J, González Díaz OM (2019) Highly photoactive TiO2 microspheres for photocatalytic production of hydrogen. Int J Hydrog Energy 44:24653–24666. https://doi.org/10.1016/j.ijhydene.2019.07.230

    Article  CAS  Google Scholar 

  93. Gong H, Liu Q, Huang C (2019) NiSe as an effective co-catalyst coupled with TiO2 for enhanced photocatalytic hydrogen evolution. Int J Hydrog Energy 44:4821–4831. https://doi.org/10.1016/j.ijhydene.2019.01.039

    Article  CAS  Google Scholar 

  94. Chen WT, Dong Y, Yadav P, Aughterson RD, Sun-Waterhouse D, Waterhouse GIN (2020) Effect of alcohol sacrificial agent on the performance of Cu/TiO2 photocatalysts for UV-driven hydrogen production. Appl Catal A Gen 602:117703. https://doi.org/10.1016/j.apcata.2020.117703

    Article  CAS  Google Scholar 

  95. Gao Q, Si F, Zhang S, Fang Y, Chen X, Yang S (2019) Hydrogenated F-doped TiO2 for photocatalytic hydrogen evolution and pollutant degradation. Int J Hydrog Energy 44:8011–8019. https://doi.org/10.1016/j.ijhydene.2019.01.233

    Article  CAS  Google Scholar 

  96. Zhang M, Piao C, Wang D, Liu Z, Liu J, Zhang Z, Wang J, Song Y (2020) Fixed Z-scheme TiO2|Ti|WO3 composite film as recyclable and reusable photocatalyst for highly effective hydrogen production. Opt Mater 99:109545. https://doi.org/10.1016/j.optmat.2019.109545

    Article  CAS  Google Scholar 

  97. Shangguan W, Yoshida A, Chen M (2003) Physicochemical properties and photocatalytic hydrogen evolution of TiO2 films prepared by sol–gel processes. Sol Energy Mater Sol Cells 80:433–441. https://doi.org/10.1016/j.solmat.2003.06.009

    Article  CAS  Google Scholar 

  98. Ramírez-Meneses E, García-Murillo A, Carrillo-Romo FJ, García-Alamilla R, Del Angel-Vicente P, Ramírez-Salgado J, Bartolo Pérez P (2009) Preparation and photocatalytic activity of TiO2 films with Ni nanoparticles. J Sol–Gel Sci Technol 52:267–275. https://doi.org/10.1007/s10971-009-2015-1

    Article  CAS  Google Scholar 

  99. Thompson WA, Perier C, Maroto-Valer MM (2018) Systematic study of sol–gel parameters on TiO2 coating for CO2 photoreduction. Appl Catal B-Eviron 238:136–146. https://doi.org/10.1016/j.apcatb.2018.07.018

    Article  CAS  Google Scholar 

  100. Kim J, Do JY, Park NK, Lee SJ, Hong JP, Kang M (2018) Photoreduction of CO2 into CH4 using Bi2S3-TiO2 double-layered dense films. Korean J Chem Eng 35:1089–1098. https://doi.org/10.1007/s11814-018-0007-y

    Article  CAS  Google Scholar 

  101. Cueto LF, Hirata GA, Sánchez EM (2006) Thin-film TiO2 electrode surface characterization upon CO2 reduction processes. J Sol–Gel Sci Technol 37:105–109. https://doi.org/10.1007/s10971-006-6427-x

    Article  CAS  Google Scholar 

  102. Della Gaspera E, Mura A, Menin E, Guglielmi M, Martucci A (2013) Reducing gases and VOCs optical sensing using surface plasmon spectroscopy of porous TiO2-Au colloidal films. Sensor Actuat B-Chem 187:363–370. https://doi.org/10.1016/j.snb.2012.12.041

    Article  CAS  Google Scholar 

  103. Li Z, Li H, Wu Z, Wang M, Luo J, Torun H, Hu P, Yang C, Grundmann M, Liu X, Fu Y (2019) Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater Horiz 6:470–506. https://doi.org/10.1039/C8MH01365A

    Article  CAS  Google Scholar 

  104. Mokrushin AS, Simonenko EP, Simonenko NP, Bukunov KA, Yu P, Gorobtsov PY, Sevastyanov VG, Kuznetsov NT (2019) Gas-sensing properties of nanostructured TiO2-xZrO2 thin films obtained by the sol–gel method. J Sol–Gel Sci Technol 92:415–426. https://doi.org/10.1007/s10971-019-04979-4

    Article  CAS  Google Scholar 

  105. Duan X, Sun D, Zhu Z, Chen X, Shi P (2002) Photocatalytic decomposition of toluene by TiO2 film as photocatalyst. J Environ Sci Health A 37:679–692. https://doi.org/10.1081/ESE-120003246

    Article  Google Scholar 

  106. Hu H, Xiao W, Yuan J, Shi J, He D, Shangguan W (2008) High photocatalytic activity and stability for decomposition of gaseous acetaldehyde on TiO2/Al2O3 composite films coated on foam nickel substrates by sol–gel processes. J Sol–Gel Sci Technol 45:1–8. https://doi.org/10.1007/s10971-007-1650-7

    Article  CAS  Google Scholar 

  107. Hinojosa-Reyes M, Arriaga S, Diaz-Torres LA, Rodríguez-González V (2013) Gas-phase photocatalytic decomposition of ethylbenzene over perlite granules coated with indium doped TiO2. Chem Eng J 224:106–113. https://doi.org/10.1016/j.cej.2013.01.066

    Article  CAS  Google Scholar 

  108. Novak Tušar N, Šuligoj A, Lavrenčič Štangar U (2018) TiO2/SiO2 films for removal of volatile organic compounds (VOCs) from indoor air. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_76-1

  109. Moongraksathum B, Chien MY, Wen Y (2019) Antiviral and antibacterial effects of silver-doped TiO2 prepared by the peroxo sol–gel method. J Nanosci Nanotech 19:7356–7362. https://doi.org/10.1166/jnn.2019.16615

    Article  CAS  Google Scholar 

  110. Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 47:20214–20220. https://doi.org/10.1021/jp906325q

    Article  CAS  Google Scholar 

  111. Roldán MV, Oña P, Castro Y, Durán A, Faccendini P, Lagier C, Grau R, Pellegri NS (2014) Photocatalytic and biocidal activities of novel coating systems of mesoporous and dense TiO2-anatase containing silver nanoparticles. Mater Sci Eng C 43:630–640. https://doi.org/10.1016/j.msec.2014.07.053

    Article  CAS  Google Scholar 

  112. Soule LD, Chomorro NP, Chuong K, Mellott N, Hammer N, Hankenson KD, Chatzistavrou X (2020) Sol–gel-derived bioactive and antibacterial multi-component thin films by the spin-coating technique. ACS Biomater Sci Eng 6:5549–5562. https://doi.org/10.1021/acsbiomaterials.0c01140

    Article  CAS  Google Scholar 

  113. Wang MC, Lin HJ, Yang TS (2009) Characteristics and optical properties of iron ion (Fe3+)-doped titanium oxide thin films prepared by a sol–gel spin coating. J Alloy Compd 473:394–400. https://doi.org/10.1016/j.jallcom.2008.05.105

    Article  CAS  Google Scholar 

  114. Kim DJ, Hahn SH, Oh SH, Kim EJ (2002) Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol–gel dip coating. Mater Lett 54:355–360. https://doi.org/10.1016/S0167-577X(02)00790-5

    Article  Google Scholar 

  115. Yu J, Zhao X, Zhao Q (2001) Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method. Mater Chem Phys 69:25–29. https://doi.org/10.1016/S0254-0584(00)00291-1

    Article  CAS  Google Scholar 

  116. Aziz RA, Yusof NM, Masrom AK (2011) Effect of ultrasonic irradiation time and amplitude variation on TiO2 particles. Solid State Sci Technol 19:371–383. http://myjms.mohe.gov.my/index.php/masshp/article/view/4858

  117. Yu J, Xiong J, Cheng B, Liu S (2005) Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl Catal B-Environ 60:211–221. https://doi.org/10.1016/j.apcatb.2005.03.009

    Article  CAS  Google Scholar 

  118. Wang B, Duan Y, Zhang J (2016) Titanium dioxide nanoparticles-coated aramid fiber showing enhanced interfacial strength and UV resistance properties. Mater Des 103:330–338. https://doi.org/10.1016/j.matdes.2016.04.085

    Article  CAS  Google Scholar 

  119. Dao VD, Larina LL, Choi HS (2015) Suppression of charge recombination in dye-sensitized solar cells using the plasma treatment of fluorine-doped tin oxide substrates. J Electrochem Soc 162:H903–H909. https://doi.org/10.1149/2.0851512jes

    Article  CAS  Google Scholar 

  120. Dao VD, Larina LL, Choi HS (2015) Minimizing energy losses in perovskite solar cells using plasma-treated transparent conducting layers. Thin Solid Films 593:10–16. https://doi.org/10.1016/j.tsf.2015.09.035

    Article  CAS  Google Scholar 

  121. Horprathum M, Eiamchai P, Chindaudom P, Pokaipisit A, Limsuwan P (2012) Oxygen partial pressure dependence of the properties of TiO2 thin films deposited by DC reactive magnetron sputtering. Procedia Eng 32:676–682. https://doi.org/10.1016/j.proeng.2012.01.1326

    Article  CAS  Google Scholar 

  122. Kitano M, Takeuchi M, Matsuoka M, Thomas JM, Anpo M (2005) Preparation of visible light-responsive TiO2 thin film photocatalysts by an RF magnetron sputtering deposition method and their photocatalytic reactivity. Chem Lett 34:616–617. https://doi.org/10.1246/cl.2005.616

    Article  CAS  Google Scholar 

  123. Agarwal S, Haseman MS, Leedy KD, Winarski DJ, Saadatkia P, Doyle E, Zhang L, Dang T, Vasilyev VS, Selim FA (2018) Tuning the phase and microstructural properties of TiO2 films through pulsed laser deposition and exploring their role as buffer layers for conductive films. J Electron Mater 47:2271–2276. https://doi.org/10.1007/s11664-017-6043-2

    Article  CAS  Google Scholar 

  124. Rico V, Romero P, Hueso JL, Espinós JP, González-Elipe AR (2009) Wetting angles and photocatalytic activities of illuminated TiO2 thin films. Catal Today 143:347–354. https://doi.org/10.1016/j.cattod.2008.09.037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SO thanks CONACYT-México for the project approved by the sectorial research fund for education CB 2017-2018 No. A1-S-9529. VRG appreciates the support from CONACYT through the project Ciencia de Frontera 2019, Project 101703.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sergio Obregón or Vicente Rodríguez-González.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obregón, S., Rodríguez-González, V. Photocatalytic TiO2 thin films and coatings prepared by sol–gel processing: a brief review. J Sol-Gel Sci Technol 102, 125–141 (2022). https://doi.org/10.1007/s10971-021-05628-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05628-5

Keywords

Navigation