Skip to main content
Log in

Heat treatment as a key factor for enhancing the photodegradation performance of hydrothermally-treated sol–gel TiO2–SiO2 nanocomposites

  • Original Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Most studies related to the synthesis of TiO2–SiO2 composites for photocatalytic applications did not systematically evaluate the textural and photocatalytic properties obtained from different integration levels between these two phases. Thus, this work investigates the influence of the heat treatment step on the structural properties and photodegradation activity of TiO2–SiO2 composites synthesized by different sol–gel and hydrothermal routes. The as-prepared samples showed significant textural and photocatalytic differences, whereas the heat-treated samples showed similar structures and properties. However, some critical differences could be observed, such as different resistances to crystal growth due to the distinct location of the silica phase. Moreover, it was possible to identify a great photocatalytic enhancement by comparing the heat-treated and as-synthesized samples, which was mainly attributed to the segregation of SiO2 toward surface sites. Here, it was observed that the crystallization of titania after the heat-treatment step had a minor effect on the composites photoactivity since even the as-prepared samples were crystalline. The heat treatment was shown to be fundamental for a controlled segregation of the two phases, promoting a synchronous effect between the adsorption of MB molecules on the silica-rich portion and photocatalysis in the vicinity of such sites, where the titania phase is present. Such behavior was more pronounced in samples prepared with an early addition of TEOS during the synthesis.

Highlights

  • TiO2–SiO2 nanocomposites synthesized by sol–gel technique and hydrothermal treatment.

  • Optimization of the photocatalytic activity by thermal treatment.

  • Highest dye removal for composites with early addition of silica precursor.

  • Controlled segregation of the silica phase under heat treatment.

  • Combined effect of the photoactivity of TiO2 and adsorption capacity of SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582. https://doi.org/10.1016/j.surfrep.2008.10.001

    Article  CAS  Google Scholar 

  2. Chen Y, Wang K, Lou L (2004) Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation. J Photochem Photobiol A Chem 163(1–2):281–287. https://doi.org/10.1016/j.jphotochem.2003.12.012

    Article  CAS  Google Scholar 

  3. Pelaez M et al. (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125(Aug):331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  4. Ma D, Shi J-W, Zou Y, Fan Z, Ji X, Niu C (2017) Highly efficient photocatalyst based on a CdS quantum Dots/ZnO nanosheets 0D/2D heterojunction for hydrogen evolution from water splitting. ACS Appl Mater Interfaces 9(30 Aug):25377–25386. https://doi.org/10.1021/acsami.7b08407

    Article  CAS  Google Scholar 

  5. Tong H, Enomoto N, Inada M, Tanaka Y, Hojo J (2014) Hydrothermal synthesis of mesoporous TiO2-SiO2 core-shell composites for dye-sensitized solar cells. Electrochim Acta 130:329–334. https://doi.org/10.1016/j.electacta.2014.03.032

    Article  CAS  Google Scholar 

  6. Long R et al. (2017) Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO2 to CH4. J Am Chem Soc 139(12 Mar):4486–4492. https://doi.org/10.1021/jacs.7b00452

    Article  CAS  Google Scholar 

  7. Mills A, Hunte SL (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem 108(1):1–35. https://doi.org/10.1016/S1010-6030(97)00118-4

    Article  CAS  Google Scholar 

  8. Jafry HR, Liga MV, Li Q, Barron AR (2011) Simple route to enhanced photocatalytic activity of P25 titanium dioxide nanoparticles by silica addition. Environ Sci Technol 45(4):1563–1568. https://doi.org/10.1021/es102749e

    Article  Google Scholar 

  9. Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113(47):20214–20220. https://doi.org/10.1021/jp906325q

    Article  CAS  Google Scholar 

  10. Akhavan O, Ghaderi E (2013) Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons. Nanoscale 5(21 Nov):10316–10326. https://doi.org/10.1039/c3nr02161k

    Article  CAS  Google Scholar 

  11. Rozada F, Calvo LF, García AI, Martín-Villacorta J, Otero M (2003) Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresour Technol 87(3 May):221–230. https://doi.org/10.1016/S0960-8524(02)00243-2

    Article  CAS  Google Scholar 

  12. Sclafani A, Herrmann JM (1996) Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. J Phys Chem 100(32):13655–13661. https://doi.org/10.1021/jp9533584

    Article  CAS  Google Scholar 

  13. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93(1 Jan):341–357. https://doi.org/10.1021/cr00017a016

    Article  CAS  Google Scholar 

  14. Palhares HG, Gonçalves BS, Silva LMC, Nunes EHM, Houmard M (2020) Clarifying the roles of hydrothermal treatment and silica addition to synthesize TiO2-based nanocomposites with high photocatalytic performance. J Sol-Gel Sci Technol 95(1 Jul):119–135. https://doi.org/10.1007/s10971-020-05265-4

    Article  CAS  Google Scholar 

  15. Dong W et al. (2007) Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. J Am Chem Soc 129(45):13894–13904. https://doi.org/10.1021/ja073804o

    Article  CAS  Google Scholar 

  16. Dong W et al. (2012) Excellent photocatalytic degradation activities of ordered mesoporous anatase TiO2-SiO2 nanocomposites to various organic contaminants. J Hazard Mater 229–230:307–320. https://doi.org/10.1016/j.jhazmat.2012.06.002

    Article  CAS  Google Scholar 

  17. He C, Tian B, Zhang J (2010) Thermally stable SiO2-doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity. J Colloid Interface Sci 344(2):382–389. https://doi.org/10.1016/j.jcis.2010.01.002

    Article  CAS  Google Scholar 

  18. Sirimahachai U, Ndiege N, Chandrasekharan R, Wongnawa S, Shannon MA (2010) Nanosized TiO2 particles decorated on SiO2 spheres (TiO2/SiO2): synthesis and photocatalytic activities. J Sol-Gel Sci Technol 56(1):53–60. https://doi.org/10.1007/s10971-010-2272-z

    Article  CAS  Google Scholar 

  19. Guo N et al. (2014) Uniform TiO2–SiO2 hollow nanospheres: synthesis, characterization and enhanced adsorption–photodegradation of azo dyes and phenol. Appl Surf Sci 305(Jun):562–574. https://doi.org/10.1016/j.apsusc.2014.03.136

    Article  CAS  Google Scholar 

  20. Resende SF, Gouveia RL, Oliveira BS, Vasconcelos WL (2017) Synthesis of TiO2/SiO2-B2O3 ternary nanocomposites: influence of interfacial properties on their photocatalytic activities with high resolution mass spectrometry monitoring. J. Braz. Chem. Soc. 28(10):1995–2003. https://doi.org/10.21577/0103-5053.20170044.

  21. Aguado J, Vangrieken R, Lopezmunoz M, Marugan J (2006) A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts. Appl Catal A Gen 312(Sep):202–212. https://doi.org/10.1016/j.apcata.2006.07.003

    Article  CAS  Google Scholar 

  22. Dong W et al. (2010) Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2-SiO2 nanocomposites generating excellent degradation activity of RhB dye. Appl Catal B Environ 95(3–4):197–207. https://doi.org/10.1016/j.apcatb.2009.12.025

    Article  CAS  Google Scholar 

  23. Resende SF, Nunes EHM, Houmard M, Vasconcelos WL (2014) Simple sol-gel process to obtain silica-coated anatase particles with enhanced TiO2-SiO2 interfacial area. J Colloid Interface Sci 433:211–217. https://doi.org/10.1016/j.jcis.2014.06.033

    Article  CAS  Google Scholar 

  24. Yang D et al. (2011) Grafting silica species on anatase surface for visible light photocatalytic activity. Energy Environ Sci 4(6 Jun):2279. https://doi.org/10.1039/c1ee01182k

    Article  CAS  Google Scholar 

  25. Arai Y, Tanaka K, Khlaifat AL (2006) Photocatalysis of SiO2-loaded TiO2. J Mol Catal A Chem 243(1):85–88. https://doi.org/10.1016/j.molcata.2005.08.016

    Article  CAS  Google Scholar 

  26. Okada K, Yamamoto N, Kameshima Y, Yasumori A, MacKenzie KJD (2001) Effect of silica additive on the anatase-to-rutile phase transition. J Am Ceram Soc 84(7 Jul):1591–1596. https://doi.org/10.1111/j.1151-2916.2001.tb00882.x

    Article  CAS  Google Scholar 

  27. Sonar SK, Wagh RV, Niphadkar PS, Joshi PN, Deshpande SS, Awate SV (2013) Enhanced dual-effect of adsorption and photodegradation of SiO2 Embedded TiO2 hybrid catalyst for improved decolourization of methylene blue. Water Air Soil Pollut 224, 1726 (2013). https://doi.org/10.1007/s11270-013-1726-7

  28. Kim YK, Kim EY, Whang CM, Kim YH, Lee WI (2005) Microstructure and photocatalytic property of SiO2-TiO2 under various process condition. J Sol-Gel Sci Technol 33(1):87–91. https://doi.org/10.1007/s10971-005-6705-z

    Article  CAS  Google Scholar 

  29. Bellardita M et al. (2010) Photocatalytic activity of TiO2/SiO2 systems. J Hazard Mater 174(1–3):707–713. https://doi.org/10.1016/j.jhazmat.2009.09.108

    Article  CAS  Google Scholar 

  30. Bhaumik A, Samanta S, Mal NK (2004) Highly active disordered extra large pore titanium silicate. Microporous Mesoporous Mater 68(1–3 Mar):29–35. https://doi.org/10.1016/j.micromeso.2003.12.005

    Article  CAS  Google Scholar 

  31. Chandra D, Bhaumik A (2006) Highly active 2D hexagonal mesoporous titanium silicate synthesized using a cationic-anionic mixed-surfactant assembly. Ind Eng Chem Res 45(14 Jul):4879–4883. https://doi.org/10.1021/ie060312w

    Article  CAS  Google Scholar 

  32. Das SK, Bhunia MK, Bhaumik A (2010) Highly ordered Ti-SBA-15: efficient H2 adsorbent and photocatalyst for eco-toxic dye degradation. J Solid State Chem 183(6 Jun):1326–1333. https://doi.org/10.1016/j.jssc.2010.04.015

    Article  CAS  Google Scholar 

  33. Musaev K, Mirkhamitova D, Yarbekov A, Nurmanov S, Akbarov K, Ruzimuradov O (2019) Facile synthesis of SiO2–TiO2 photocatalyst nanoparticles for degradation of phenolic water pollutants, SN Appl Sci 1, 1164 (2019) https://doi.org/10.1007/s42452-019-1192-y

  34. Sermon PA, Leadley JG, MacGibbon RM, Ruzimuradov O (2012) Tuning X/(TiO2) x–(SiO2)100–x (0 < x < 40) xerogel photocatalysts. Ion (Kiel) 18(5 May):455–459. https://doi.org/10.1007/s11581-012-0686-z

    Article  CAS  Google Scholar 

  35. Langlet M, Kim A, Audier M, Guillard C, Herrmann JM (2003) Liquid phase processing and thin film deposition of titania nanocrystallites for photocatalytic applications on thermally sensitive substrates. J Mater Sci 38(19):3945–3953. https://doi.org/10.1023/A:1026150213468

    Article  CAS  Google Scholar 

  36. Anderson C, Bard AJ (1995) An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. J Phys Chem 99(24):9882–9885. https://doi.org/10.1021/j100024a033

    Article  CAS  Google Scholar 

  37. Mazinani B et al. (2012) The effects of hydrothermal temperature on structural and photocatalytic properties of ordered large pore size TiO2-SiO2 mesostructured composite. J Alloy Compd 519:72–76. https://doi.org/10.1016/j.jallcom.2011.12.051

    Article  CAS  Google Scholar 

  38. Van Grieken R, Aguado J, López-Muñoz MJ, Marugán J (2010) Sol-gel titania and titania-silica mixed oxides photocatalysts. Solid State Phenom 162:221–238. https://doi.org/10.4028/www.scientific.net/SSP.162.221

    Article  CAS  Google Scholar 

  39. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  40. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61(1 Jan):1–7. https://doi.org/10.1007/s10971-011-2582-9

    Article  CAS  Google Scholar 

  41. Karino S, Hojo J (2010) Synthesis and characterization of TiO2-coated SiO2 particles by hydrolysis of titanium alkoxide in alcohol solvents. J Ceram Soc Jpn 118(1379):591–596. https://doi.org/10.2109/jcersj2.118.591

    Article  CAS  Google Scholar 

  42. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: a review. Appl Catal B Environ 49(1):1–14. https://doi.org/10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  43. Yang J et al. (2006) Synthesis of nano titania particles embedded in mesoporous SBA-15: characterization and photocatalytic activity. J Hazard Mater 137(2 Sep):952–958. https://doi.org/10.1016/j.jhazmat.2006.03.017

    Article  CAS  Google Scholar 

  44. Mota TLR, Gomes ALM, Palhares HG, Nunes EHM, Houmard M (2019) Influence of the synthesis parameters on the mesoporous structure and adsorption behavior of silica xerogels fabricated by sol–gel technique. J Sol-Gel Sci Technol https://doi.org/10.1007/s10971-019-05131-y

  45. Nakaruk A, Ragazzon D, Sorrell CC (2010) Anatase-rutile transformation through high-temperature annealing of titania films produced by ultrasonic spray pyrolysis. Thin Solid Films 518(14 May):3735–3742. https://doi.org/10.1016/j.tsf.2009.10.109

    Article  CAS  Google Scholar 

  46. Balachandran K, Venckatesh R, Sivaraj R, Rajiv P (2014) TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: a comparative study of photo catalysis on acid red 88. Spectrochim Acta A Mol Biomol Spectrosc 128:468–474. https://doi.org/10.1016/j.saa.2014.02.127

    Article  CAS  Google Scholar 

  47. Nussbaum M, Paz Y (2012) Ultra-thin SiO2 layers on TiO2: improved photocatalysis by enhancing products’ desorption. Phys Chem Chem Phys 14(10):3392. https://doi.org/10.1039/c2cp23202b

    Article  CAS  Google Scholar 

  48. Almeida RM, Pantano CG (1990) Structural investigation of silica gel films by infrared spectroscopy. J Appl Phys 68(8):4225–4232. https://doi.org/10.1063/1.346213

    Article  CAS  Google Scholar 

  49. Hong S-S, Lee MS, Park SS, Lee G-D (2003) Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol. Catal Today 87(1):99–105. https://doi.org/10.1016/j.cattod.2003.10.012

    Article  CAS  Google Scholar 

  50. Jung HY, Gupta RK, Oh EO, Kim YH, Whang CM (2005) Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs. J Non Cryst Solids 351(5):372–379. https://doi.org/10.1016/j.jnoncrysol.2005.01.004

    Article  CAS  Google Scholar 

  51. Kumar AM et al. (2014) Evaluation of chemically modified Ti-5Mo-3Fe alloy surface: electrochemical aspects and in vitro bioactivity on MG63 cells. Appl Surf Sci 307:52–61. https://doi.org/10.1016/j.apsusc.2014.03.146

    Article  CAS  Google Scholar 

  52. Vasconcelos DCL, Costa VC, Nunes EHM, Sabioni ACS, Gasparon M, Vasconcelos WL (2011) Infrared spectroscopy of titania sol-gel coatings on 316L stainless steel. Mater Sci Appl 02(10 Oct):1375–1382. https://doi.org/10.4236/msa.2011.210186

    Article  CAS  Google Scholar 

  53. Robert RM, Silverstein M, Bassler GC, Morrill TC (1981) Spectrometric identification of organic compounds. John Wiley and Sons: New York. https://www.worldcat.org/title/spectrometric-identification-of-organic-compounds/oclc/6627089

  54. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177(1–3 May):70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors kindly thank INCT-Acqua Institute, Prof. Paulo Brandão, Ilda Batista, and Isabel Batista for the help with FTIR and Nitrogen sorption characterizations. We also greatly thank Professors Adriana França and Leandro Soares from DEMEC-UFMG (Laboratório de Biocombustíveis) for the helpful discussions and support given to this research.

Funding

FAPEMIG (APQ-00792-17, APQ-01881-18), CNPq (305013/2017-3, 301423/2018-0), and CAPES (PROEX) are acknowledged for the financial supports.

Author contributions

All the authors contributed for the conceptualization, experimental procedure, and writing of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Guimarães Palhares.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palhares, H.G., Nunes, E.H.M. & Houmard, M. Heat treatment as a key factor for enhancing the photodegradation performance of hydrothermally-treated sol–gel TiO2–SiO2 nanocomposites. J Sol-Gel Sci Technol 99, 188–197 (2021). https://doi.org/10.1007/s10971-021-05545-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05545-7

Keywords

Navigation