Skip to main content
Log in

Fluorine-doped tin oxide as efficient solid acid catalyst: acidity and the catalytic activity relationship

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Herein we report an easy and facile method for preparation of Tin oxide-doped fluorine. SnO2 nanoparticles were synthesized using the sol–gel method. The obtained Sn(OH)4 is calcined at 450 °C then impregnated with different loading 10–55 wt.% of HF as a source of fluoride, followed by calcination at 200, 300, and 400 °C. The particle size of SnO2 was found to be between 5 and 8 nm. The SBET values and pore size distribution of the F–Sn data were discussed. Examining the surface acidity, confirm that the addition of fluoride ions increases both of the total surface acidity and the ratio of Brønsted to Lewis acid sites. The catalytic activity of the fluoride-tin oxide nanoparticles solid catalysts was investigated through the synthesis of 3,4-dihydropyrimidin-2(1H)-one. 45 F–Sn catalyst calcined at 200 °C has the highest and strongest acid sites (Ea = 450.0 mV) that enhance the catalytic activity reaching the maximum yield of (96.5%). The F–Sn catalysts were reused several times with no activity loss.

Highlights

  • SnO2 nanocatalyst was doped with different loading of fluoride (10–55 wt. %) and calcined at different temperatures (200, 300, and 400 °C).

  • The prepared catalysts had the tetragonal cassiterite structure phase of SnO2 with crystal size between 5 and 8.2 nm.

  • The sample 45F-Sn calcined at 200 °C has the highest B/L ratio and gives the best yield (96.5%) of 3,4-dihydropyrimidin-2(1H)-one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10

Similar content being viewed by others

References

  1. Yadav JS, Reddy BVS, Sridhar P, Reddy JSS, Nagaiah K, Lingaiah N, Saiprasad PS (2004) Green protocol for the Biginelli three-component reaction: Ag3PW12O40 as a novel, water-tolerant heteropolyacid for the synthesis of 3,4-dihydropyrimidinones. Eur J Org Chem 2004:552–557

    Google Scholar 

  2. Wilson K, Clark JH (2000) Solid acids and their use as environmentally friendly catalysts in organic synthesis. Pure Appl Chem 72:1313–1319

    CAS  Google Scholar 

  3. Gupta P, Paul S (2014) Solid acids: green alternatives for acid catalysis. Catal Today 236:153–170

    CAS  Google Scholar 

  4. Pavlovic J, Popova M, Mihalyi RM, Mazaj M, Mali G, Kovač J, Lazarova H, Rajic N (2019) Catalytic activity of SnO2- and SO4/SnO2-containing clinoptilolite in the esterification of levulinic acid. Microporous Mesoporous Mater 279:10–18

    CAS  Google Scholar 

  5. Al-Hamdi AM, Sillanpää M, Bora T, Dutta J (2016) Efficient photocatalytic degradation of phenol in aqueous solution by SnO2:Sb nanoparticles. Appl Surf Sci 370:229–236

    CAS  Google Scholar 

  6. Lee D-K, Wan Z, Bae J-S, Lee H-B-R, Ahn J-H, Kim S-D, Kim J, Kwon S-H (2016) Plasma-enhanced atomic layer deposition of SnO2 thin films using SnCl4 and O2 plasma. Mater Lett 166:163–166

    CAS  Google Scholar 

  7. Rahal A, Benhaoua A, Jlassi M, Benhaoua B (2015) Structural, optical and electrical properties studies of ultrasonically deposited tin oxide (SnO2) thin films with different substrate temperatures. Superlattices Microstruct 86:403–411

    CAS  Google Scholar 

  8. Woo H-S, Hwang I-S, Na CW, Kim S-J, Choi J-K, Lee J-S, Choi J, Kim G-T, Lee J-H (2012) Simple fabrication of transparent flexible devices using SnO2 nanowires and their optoelectronic properties. Mater Lett 68:60–63

    CAS  Google Scholar 

  9. Maziarz W (2019) TiO2/SnO2 and TiO2/CuO thin film nano-heterostructures as gas sensors. Appl Surf Sci 480:361–370

    CAS  Google Scholar 

  10. Liu Y, He H, Jiang J, Zhang K, Liu S, He M, Han G, Guo X, Liu W, Li B (2019) Hollow carbonaceous microspheres-reduced graphene oxide enhances lithium storage performance of SnO2-based anode. J Solid State Chem 270:553–562

    CAS  Google Scholar 

  11. Salavati-Niasari M, Mir N, Davar F (2010) Synthesis, characterization and optical properties of tin oxide nanoclusters prepared from a novel precursor via thermal decomposition route. Inorg Chim Acta 363:1719–1726

    CAS  Google Scholar 

  12. Mannam PDM,R, Rao MSR, DasGupta N (2017) Effect of annealing ambient on SnO2 thin film transistors. Appl Surf Sci 418:414–417

    Google Scholar 

  13. Khun Khun K, Mahajan A, Bedi RK (2011) Effect of cationic/anionic organic surfactants on evaporation induced self assembled tin oxide nanostructured films. Appl Surf Sci 257:2929–2934

    CAS  Google Scholar 

  14. Cabrera AF, Mudarra Navarro AM, Rodríguez Torres CE, Sánchez FH (2007) Mechanosynthesis of Fe-doped SnO2 nanoparticles. Phys B: Condens Matter 398:215–218

    CAS  Google Scholar 

  15. Sujatha Lekshmy S, Joy K (2014) Structural and optoelectronic properties of indium doped SnO2 thin films deposited by sol gel technique. J Mater Sci: Mater Electron 25:1664–1672

    CAS  Google Scholar 

  16. Elangovan E, Ramesh K, Ramamurthi K (2004) Studies on the structural and electrical properties of spray deposited SnO2:Sb thin films as a function of substrate temperature. Solid State Commun 130:523–527

    CAS  Google Scholar 

  17. Moholkar AV, Pawar SM, Rajpure KY, Bhosale CH, Kim JH (2009) Effect of fluorine doping on highly transparent conductive spray deposited nanocrystalline tin oxide thin films. Appl Surf Sci 255:9358–9364

    CAS  Google Scholar 

  18. Thirumoorthi M, Prakash JTJ (2016) Effect of F doping on physical properties of (211) oriented SnO2 thin films prepared by jet nebulizer spray pyrolysis technique. Superlattices Microstruct 89:378–389

    CAS  Google Scholar 

  19. Bu IYY (2014) Sol–gel deposition of fluorine-doped tin oxide glasses for dye sensitized solar cells. Ceram Int 40:417–422

    CAS  Google Scholar 

  20. Kim H, Auyeung RCY, Piqué A (2008) Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition. Thin Solid Films 516:5052–5056

    CAS  Google Scholar 

  21. Han C-H, Hong D-U, Gwak J, Han S-D (2007) A planar catalytic combustion sensor using nano-crystalline F-doped SnO2 as a supporting material for hydrogen detection, Korean. J Chem Eng 24:927–931

    CAS  Google Scholar 

  22. Tseng S-F, Hsiao W-T, Huang K-C, Chiang D (2011) The effect of laser patterning parameters on fluorine-doped tin oxide films deposited on glass substrates. Appl Surf Sci 257:8813–8819

    CAS  Google Scholar 

  23. Khelladi MR, Mentar L, Boubatra M, Azizi A, Kahoul A (2010) Early stages of cobalt electrodeposition on FTO and n-type Si substrates in sulfate medium. Mater Chem Phys 122:449–453

    CAS  Google Scholar 

  24. Macedo AG, de Vasconcelos EA, Valaski R, Muchenski F, da Silva EF, da Silva AF, Roman LS (2008) Enhanced lifetime in porous silicon light-emitting diodes with fluorine doped tin oxide electrodes. Thin Solid Films 517:870–873

    CAS  Google Scholar 

  25. Gao Q, Jiang H, Li C, Ma Y, Li X, Ren Z, Liu Y, Song C, Han G (2013) Tailoring of textured transparent conductive SnO2:F thin films. J Alloy Compd 574:427–431

    CAS  Google Scholar 

  26. Benhaoua A, Rahal A, Benhaoua B, Jlassi M (2014) Effect of fluorine doping on the structural, optical and electrical properties of SnO2 thin films prepared by spray ultrasonic. Superlattices Microstruct 70:61–69

    CAS  Google Scholar 

  27. Acosta M, Méndez RA, Riech I, Rodríguez-Pérez M, Rodríguez-Gattorno G (2019) Structural, optical and photoelectrochemical properties of tungsten oxide thin films grown by non-reactive RF-sputtering. Superlattices Microstruct 127:123–127

    CAS  Google Scholar 

  28. Ahammad AJS, Pal PR, Shah SS, Islam T, Mahedi Hasan M, Qasem MAA, Odhikari N, Sarker S, Kim DM, Abdul M (2019) Aziz, Activated jute carbon paste screen-printed FTO electrodes for nonenzymatic amperometric determination of nitrite. J Electroanalytical Chem 832:368–379

    CAS  Google Scholar 

  29. Kaur R, Chaudhary S, Kumar K, Gupta MK, Rawal RK (2017) Recent synthetic and medicinal perspectives of dihydropyrimidinones: a review. Eur J Med Chem 132:108–134

    CAS  Google Scholar 

  30. Mostafa AS, Selim KB (2018) Synthesis and anticancer activity of new dihydropyrimidinone derivatives. Eur J Med Chem 156:304–315

    CAS  Google Scholar 

  31. Pramanik M, Bhaumik A (2014) Phosphonic acid functionalized ordered mesoporous material: a new and ecofriendly catalyst for one-pot multicomponent biginelli reaction under solvent-free conditions. ACS Appl Mater Interfaces 6:933–941

    CAS  Google Scholar 

  32. Tu S, Zhu X, Shi F, Zhang J, Zhang Y (2007) An efficient microwave-assisted synthesis of 3,5-unsubstituted 4-substituted-6-aryl-3,4-dihydropyridin-2(1H)-ones derivatives. J Heterocycl Chem 44:837–842

    CAS  Google Scholar 

  33. Bhosale RS, Bhosale SV, Bhosale SV, Wang T, Zubaidha PK (2004) An efficient, high yield protocol for the one-pot synthesis of dihydropyrimidin-2(1H)-ones catalyzed by iodine. Tetrahedron Lett 45:9111–9113

    CAS  Google Scholar 

  34. Mondal J, Sen T, Bhaumik A (2012) Fe3O4@mesoporous SBA-15: a robust and magnetically recoverable catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via the Biginelli reaction. Dalton Trans 41:6173–6181

    CAS  Google Scholar 

  35. Wang Y, Yang H, Yu J, Miao Z, Chen R (2009) Highly enantioselective Biginelli reaction promoted by chiral bifunctional primary amine-thiourea catalysts: asymmetric synthesis of dihydropyrimidines. Adv Synth Catal 351:3057–3062

    CAS  Google Scholar 

  36. Fedorova OV, Titova YA, Vigorov AY, Toporova MS, Alisienok OA, Murashkevich AN, Krasnov VP, Rusinov GL, Charushin VN (2016) Asymmetric Biginelli reaction catalyzed by silicon, titanium and aluminum oxides. Catal Lett 146:493–498

    CAS  Google Scholar 

  37. El-Yazeed WSA, Ahmed AI (2019) Photocatalytic activity of mesoporous WO3/TiO2 nanocomposites for the photodegradation of methylene blue. Inorg Chem Commun 105:102–111

    Google Scholar 

  38. El-Yazeed WSA, Ahmed AI (2019) Monometallic and bimetallic Cu–Ag MOF/MCM-41 composites: structural characterization and catalytic activity. RSC Adv 9:18803–18813

    CAS  Google Scholar 

  39. Ahmed AI, El-Hakam SA, Samra SE, El-Khouly AA, Khder AS (2008) Structural characterization of sulfated zirconia and their catalytic activity in dehydration of ethanol. Colloids Surf A: Physicochemical Eng Asp 317:62–70

    CAS  Google Scholar 

  40. Matsuhashi H, Motoi H, Arata K (1994) Determination of acid strength of solid superacids by temperature programmed desorption using pyridine. Catal Lett 26:325–328

    CAS  Google Scholar 

  41. Omran Alkhayatt AH, Hussian SK (2015) Fluorine highly doped nanocrystalline SnO2 thin films prepared by SPD technique. Mater Lett 155:109–113

    CAS  Google Scholar 

  42. Zhang B, Tian Y, Zhang JX, Cai W (2011) Structural, optical, electrical properties and FTIR studies of fluorine doped SnO2 films deposited by spray pyrolysis. J Mater Sci 46:1884–1889

    CAS  Google Scholar 

  43. Samad WZ, Goto M, Kanda H, Wahyudiono, Nordin N, Liew KH, Yarmo MA, Yusop MR (2017) Fluorine-doped tin oxide catalyst for glycerol conversion to methanol in sub-critical water. J Supercrit Fluids 120:366–378

    CAS  Google Scholar 

  44. Kumar A, Swami SK, Dutta V (2014) The role of electric field during spray deposition on fluorine doped tin oxide film. J Alloy Compd 588:546–550

    CAS  Google Scholar 

  45. Ahmed AI, El-Hakam SA, Khder AS, Abo El-Yazeed WS (2013) Nanostructure sulfated tin oxide as an efficient catalyst for the preparation of 7-hydroxy-4-methyl coumarin by Pechmann condensation reaction. J Mol Catal A: Chem 366:99–108

    CAS  Google Scholar 

  46. Hassan SM, Ahmed AI, Mannaa MA (2018) Structural, photocatalytic, biological and catalytic properties of SnO2/TiO2 nanoparticles. Ceram Int 44:6201–6211

    CAS  Google Scholar 

  47. Fatimah I, Rubiyanto D, Nugraha J (2018) Preparation, characterization, and modelling activity of potassium flouride modified hydrotalcite for microwave assisted biodiesel conversion. Sustain Chem Pharm 8:63–70

    Google Scholar 

  48. Kuantama E, Han D-W, Sung Y-M, Song J-E, Han C-H (2009) Structure and thermal properties of transparent conductive nanoporous F:SnO2 films. Thin Solid Films 517:4211–4214

    CAS  Google Scholar 

  49. Bandara A, Murakami K, Rajapakse RMG, Jayaweera PVV, Shimomura M, Bandara HMN, Liyanage D, Premalal EVA (2017) Versatile synthesis of fluorine-doped tin (IV) oxide one-dimensional nanostructured thin films. Thin Solid Films 621:229–239

    CAS  Google Scholar 

  50. Shi XH, Xu KJ (2017) Properties of fluorine-doped tin oxide films prepared by an improved sol-gel process. Mater Sci Semicond Process 58:1–7

    CAS  Google Scholar 

  51. Kumar V, Govind A, Nagarajan R (2011) Optical and photocatalytic properties of heavily F(-)-doped SnO2 nanocrystals by a novel single-source precursor approach. Inorg Chem 50:5637–5645

    CAS  Google Scholar 

  52. Martínez AI, Huerta L, Rueda de León JMO, Acosta D, Malik O, Aguilar M (2006) Physicochemical characteristics of fluorine doped tin oxide films. J Phys D Appl Phys 39:5091–5096

    Google Scholar 

  53. Ahn H-J, Choi H-C, Park K-W, Kim S-B, Sung Y-E (2004) Investigation of the structural and electrochemical properties of size-controlled SnO2 nanoparticles. J Phys Chem B 108:9815–9820

    CAS  Google Scholar 

  54. Cachet H, Gamard A, Campet G, Jousseaume B, Toupance T (2001) Tin dioxide thin films prepared from a new alkoxyfluorotin complex including a covalent Sn·F bond. Thin Solid Films 388:41–49

    CAS  Google Scholar 

  55. AN Banerjee, S Kundoo, P Saha, KK Chattopadhyay (2003) Synthesis and characterization of nano-crystalline fluorine-doped tin oxide thin films by sol-gel method, J Sol-Gel Sci Technol 28:105–110

  56. Sergent N, Gélin P, Périer-Camby L, Praliaud H, Thomas G (2002) Preparation and characterisation of high surface area stannic oxides: structural, textural and semiconducting properties. Sens Actuators B: Chem 84:176–188

    CAS  Google Scholar 

  57. Cognard G, Ozouf G, Beauger C, Dubau L, López-Haro M, Chatenet M, Maillard F (2017) Insights into the stability of Pt nanoparticles supported on antimony-doped tin oxide in different potential ranges. Electrochim Acta 245:993–1004

    CAS  Google Scholar 

  58. Xu C, Tamaki J, Miura N, Yamazoe N (1992) Stabilization of SnO2 ultrafine particles by additives. J Mater Sci 27:963–971

    CAS  Google Scholar 

  59. Entradas T, Cabrita JF, Dalui S, Nunes MR, Monteiro OC, Silvestre AJ (2014) Synthesis of sub-5 nm Co-doped SnO2 nanoparticles and their structural, microstructural, optical and photocatalytic properties. Mater Chem Phys 147:563–571

    CAS  Google Scholar 

  60. Kadakia K, Datta MK, Velikokhatnyi OI, Jampani PH, Kumta PN (2014) Fluorine doped (Ir,Sn,Nb)O2 anode electro-catalyst for oxygen evolution via PEM based water electrolysis. Int J Hydrog Energy 39:664–674

    CAS  Google Scholar 

  61. Ha H-W, Kim K, Borniol MD, Toupance T (2006) Fluorine-doped nanocrystalline SnO2 powders prepared via a single molecular precursor method as anode materials for Li-ion batteries. J Solid State Chem 179:702–707

    CAS  Google Scholar 

  62. Kwon H-M, Han D-W, Kwak D-J, Sung Y-M (2010) Preparation of nanoporous F-doped tin dioxide films for TCO-less dye-sensitized solar cells application. Curr Appl Phys 10:S172–S175

    Google Scholar 

  63. Langpape M, Millet JMM, Ozkan US, Boudeulle M (1999) Study of cesium or cesium-transition metal-substituted Keggin-type phosphomolybdic acid as isobutane oxidation catalysts. J Catal 181:80–90

    CAS  Google Scholar 

  64. Ahmed AI, El-Hakam SA, Elghany MAA, El-Yazeed WSA (2011) Synthesis and characterization of new solid acid catalysts, H3PW12O40 supported on nanoparticle tin oxide: an efficient catalyst for the preparation of 7-hydroxy-4-methylcoumarin. Appl Catal A: Gen 407:40–48

    CAS  Google Scholar 

  65. Klimova T, Carmona E, Klimova T (1998) Organic polymers as pore-regulating agents in TiO2–Al2O3 mixed oxide catalytic supports. J Mater Sci 33:1981–1990

    CAS  Google Scholar 

  66. Jermy BR, Pandurangan A (2005) A highly efficient catalyst for the esterification of acetic acid using n-butyl alcohol. J Mol Catal A: Chem 237:146–154

    CAS  Google Scholar 

  67. Samantaray SK, Parida K (2004) Effect of anions on the textural and catalytic activity of titania-silica mixed oxide. J Mater Sci 39:3549–3562

    CAS  Google Scholar 

  68. Noda LK, de Almeida RM, Probst LFD, Gonçalves NS (2005) Characterization of sulfated TiO2 prepared by the sol–gel method and its catalytic activity in the n-hexane isomerization reaction. J Mol Catal A: Chem 225:39–46

    CAS  Google Scholar 

  69. Rabindran Jermy B, Pandurangan A (2008) Synthesis of geminal diacetates (acylals) using heterogeneous H3PW12O40 supported MCM-41 molecular sieves. Catal Commun 9:577–583

    CAS  Google Scholar 

  70. Zhang Y, Wang B, Zhang X, Huang J, Liu C (2015) An efficient synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and thiones catalyzed by a novel Brønsted acidic ionic liquid under solvent-free conditions. Molecules 20:3811–3820

    CAS  Google Scholar 

  71. Safaei-Ghomi J, Tavazo M, Mahdavinia GH (2018) Ultrasound promoted one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones using dendrimer-attached phosphotungstic acid nanoparticles immobilized on nanosilica. Ultrason Sonochem 40:230–237

    CAS  Google Scholar 

  72. L Moradi, M Tadayon (2017) Green synthesis of 3,4-dihydropyrimidinones using nano Fe3O4 @meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation, J Saudi Chem Soc 22:66–75

  73. Essid I, Lahbib K, Kaminsky W, Ben Nasr C, Touil S (2017) 5-phosphonato-3,4-dihydropyrimidin-2(1 H)-ones: Zinc triflate-catalyzed one-pot multi-component synthesis, X-ray crystal structure and anti-inflammatory activity. J Mol Struct 1142:130–138

    CAS  Google Scholar 

  74. Elhamifar D, Mofatehnia P, Faal M (2017) Magnetic nanoparticles supported Schiff-base/copper complex: an efficient nanocatalyst for preparation of biologically active 3,4-dihydropyrimidinones. J Colloid Interface Sci 504:268–275

    CAS  Google Scholar 

  75. Murthy YLN, Rajack A, Yuvaraj K (2016) Solvent free synthesis of 3,4-dihydropyrimidine-2-(1H)-ones/thiones catalyzed by N,O-bis(trimethylsilyl)acetamide and dicyclohexyl carbodimide. Arab J Chem 9:S1740–S1746

    CAS  Google Scholar 

  76. Venu Madhav J, Thirupathi Reddy Y, Narsimha Reddy P, Nikhil Reddy M, Kuarm S, Crooks PA, Rajitha B (2009) Cellulose sulfuric acid: An efficient biodegradable and recyclable solid acid catalyst for the one-pot synthesis of aryl-14H-dibenzo[a.j]xanthenes under solvent-free conditions. J Mol Catal A: Chem 304:85–87

    CAS  Google Scholar 

  77. Bigi F, Carloni S, Frullanti B, Maggi R, Sartori G (1999) A revision of the Biginelli reaction under solid acid catalysis. Solvent-free synthesis of dihydropyrimidines over montmorillonite KSF. Tetrahedron Lett 40:3465–3468

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Awad Ibrahim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Yazeed, W.S.A., Eladl, M., Ahmed, A.I. et al. Fluorine-doped tin oxide as efficient solid acid catalyst: acidity and the catalytic activity relationship. J Sol-Gel Sci Technol 97, 191–204 (2021). https://doi.org/10.1007/s10971-020-05422-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05422-9

Keywords

Navigation