Skip to main content
Log in

Synthesis of silicate apatite phosphors with enhanced luminescence via optimized precipitation technique through pH control

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silicates with apatite structure have become one of the most promising candidates for solid-state lighting applications. Herein we report the synthesis of pure apatite Ca2Y7.76Ce0.12Tb0.12(SiO4)6O2 phosphors with enhanced luminescence via a simple precipitation method. The aim of this study is to optimize the precipitation reaction through pH control and TEOS amount. In this respect, different types of precursors were prepared by precipitation between yttrium–calcium–cerium–terbium nitrates and NaOH at various pH. The extremely complex decomposition processes of precursors are discussed based on thermogravimetric analysis. The structure, morphology, surface state and porosity of both precursors and phosphors were investigated based on FTIR, XRD, SEM and BET. It was found that the crystallinity degree of the precursors decreases from 36% to 5% with the increase of pH from 7 to 11. After the thermal treatment, the phosphors become pore-less and well crystallized with crystallite sizes up to 106 nm. The phase composition of the phosphors strongly depends on the pH during the precipitation. Synthesis performed with 40% excess of TEOS at pH 11 led to phosphors with pure apatite structure and enhanced luminescence. Under excitation with 365 nm the apatite phosphors exhibits a broad emission band in the range of 350–480 nm, due to transitions in Ce3+ and narrow lines in range of 480–650 nm specific for transitions in Tb3+.

Highlights

  • Gel precursors are prepared by precipitation at different pH for synthesis of apatite phosphors.

  • pH affects the morpho-structure and surface state of both precursors and phosphors.

  • Pure apatite with crystallites size of 66.5 nm was obtained at pH 11.

  • Effect of pH on Ce3+ and Tb3+ emission intensities was discussed in detail.

  • Apatites show blue, white-turquoise or greenish colour depending on excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Preux N, Rolle A, Vannier RN (2012) Functional materials for sustainable energy applications, electrolytes and ion conductors for solid oxide fuel cells. Woodhead Publishing Limited, Oxford, pp 370–401

  2. Setsoafia DDY, Hing P, Jung SC, Azad AK, Lim CM (2015) Sol-gel synthesis and characterization of Zn2+ and Mg2+ doped La10Si6O27 electrolytes for solid oxide fuel cells. Solid State Sci 48:163–170

    CAS  Google Scholar 

  3. Khaidukova NM, Kirm M, Feldbach E, Mägi H, Nagirnyi V, Tõldsepp E, Vielhauer S, Jüstel T, Jansen T, Makhov VN (2017) Luminescence properties of silicate apatite phosphors M2La8Si6O26:Eu (M = Mg, Ca, Sr). J Lumin 191:51–55

    Google Scholar 

  4. Pandis PK, Perros DE, Stathopoulos VN (2018) Doped apatite-type lanthanum silicates in CO oxidation reaction. Catal Commun 114:98–103

    CAS  Google Scholar 

  5. Šupová M (2015) Substituted hydroxyapatites for biomedical applications: a review. Ceram Int 41:9203–9231

    Google Scholar 

  6. Iro J (1968) Silicate apatites and oxyapatites. Am Mineral 53:890–907

    Google Scholar 

  7. Ptáček P (2016) Apatites and their synthetic analogues—synthesis, structure, properties and applications, Intech Open, Brno.

  8. Liu H, Gu W, Hai Y, Zhang L, Liao L, Mei L (2015) Facile combustion synthesis and photoluminescence properties of Ce3+ doped Sr2La8(SiO4)6O2 phosphors. Opt Mater 42:553–555

    CAS  Google Scholar 

  9. Nakayama S, Kageyama T, Aono H, Sadaoka Y (1995) Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln = La, Nd, SmGd, Dy, Y, Ho, Er and Yb). J Mater Chem 5:1801–1805

    CAS  Google Scholar 

  10. Zhang F, Liu B (2012) An intense red-emitting phosphor Ca3Gd7(SiO4)5(PO4)O2:Eu3+ for NUV-LEDs application. J Alloy Compd 542:276–279

    CAS  Google Scholar 

  11. Xia Z, Liu Q (2016) Progress in discovery and structural design of color conversion phosphors for LEDs. Prog Mater Sci 84:59–117

    CAS  Google Scholar 

  12. Guo Q, Liao L, Mei L, Liu H (2016) Structures and luminescent properties of single-phase La5.90xBa4-x(SiO4)6x(PO4)xF2:0.10Ce3+ phosphors. J Lumin 172:191–196

    CAS  Google Scholar 

  13. Guo Q, Liao L, Molokeev MS, Mei L, Liu H (2015) Color tunable emission and energy transfer of Ce3+ and Tb3+ co-doped novel La6Sr4(SiO4)6F2 phosphors with apatite structure. Mater Res Bull 72:245–251

    CAS  Google Scholar 

  14. Sokolnicki J, Zych E (2015) Synthesis and spectroscopic investigations of Sr2Y8(SiO4)6O2:Eu2+, Eu3+ phosphor for white LEDs. J Lumin 158:65–69

    CAS  Google Scholar 

  15. Xiumei H, J’un L, Mingya L, Xiaoqiang W (2006) Fabrication and luminescence properties of CazGd8(SiO4) 6O2: Er3+ phosphors via sol-gel process. J Rare Earth 24:108–110

    Google Scholar 

  16. Jiang S, Luo X, LiuY, Zhang Y, HuangC, Wang Y, Luo X, Xiang G, Tang X, Li L, Zhou X (2018) Warm white light emission of apatite-type compound Ca4Y6O(SiO4)6 doped with Dy3+. Mater Res Bull 106:428–432

    CAS  Google Scholar 

  17. Xiang J, Liu Z-G, Ouyang J-H, Yan F-Y (2012) Synthesis, structure and electrical properties of rare-earth doped apatite-type lanthanum silicates. Electrochim Acta 65:251–256

    CAS  Google Scholar 

  18. Ropp RC (1991) Studies in inorganic chemistry 12, In: Luminescence and the Solid State. Elsevier Science Publishing Company Inc., New York

  19. Xu R-R, Su Q (2017) High temperature synthesis, chapter 2. In: Modern inorganic synthetic chemistry, 2nd edn, Elsevier, Amsterdam, Netherlands, pp 9–43

  20. Kharlamova T, Vodyankina O, Matveev A, Stathopoulos V, Ishchenkod A, Khabibulind D, Sadykovd V (2015) The structure and texture genesis of apatite-type lanthanum silicates during their synthesis by co-precipitation. Ceram Int 41:13393–13408

    CAS  Google Scholar 

  21. Ferdova S, Rauweld P, Lina Z, Sá Ferreira RA, Lopes A (2010) A simple and general route for the preparation of pure and high crystalline nanosized lanthanide silicates with the structure of apatite at low temperature. J Solid State Chem 183:2726–2730

    Google Scholar 

  22. Yang T, Zhao H, Fang M, Świerczekc K, Wang J, Du Z (2019) A new family of Cu-doped lanthanum silicate apatites as electrolyte materials for SOFCs: synthesis, structural and electrical properties. J Eur Ceram Soc 39:424–431

    CAS  Google Scholar 

  23. Celerier S, Laberty C, Ansart F, Lenormand P, Stevens P (2006) New chemical route based on sol–gel process for the synthesis of oxyapatite La9.33Si6O26. Ceram Int 32:271–276

    CAS  Google Scholar 

  24. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    CAS  Google Scholar 

  25. Shi Q, Lu L, Zeng Y, Zhang H (2012) Influence of pH on the property of apatite-type lanthanum silicates prepared by sol–gel process. J Wuhan Univ Technol-Mater Sci Ed 27:841–846

    CAS  Google Scholar 

  26. Yang T, Zhao H, Han J, Xu N, Shen Y, Du Z, Wan J (2014) Synthesis and densification of lanthanum silicate apatite electrolyte for intermediate temperature solid oxide fuel cell via co-precipitation method. J Eur Ceram Soc 34:1563–1569

    CAS  Google Scholar 

  27. Yao HC, Wang JS, Hu DG, Li JF, Lu XR, Li ZJ (2010) New approach to develop dense lanthanum silicate oxyapatite sintered ceramics with high conductivity. Solid State Ion 181:41–47

    CAS  Google Scholar 

  28. Ma Y, Moliere M, Yu Z, Fenineche N, Elkedim O (2017) Novel chemical reaction co-precipitation method for the synthesis of apatite-type lanthanum silicate as an electrolyte in SOFC. J Alloy Compd 723:418–424

    CAS  Google Scholar 

  29. Jo SH, Muralidharan P, Kim DK (2009) Low-temperature sintering of dense lanthanum silicate electrolytes with apatite-type structure using an organic precipitant synthesized nanopowder. J Mater Res 24:237–244

    CAS  Google Scholar 

  30. Kioupis D, Kakali G (2016) Structural and electrical characterization of Sr-and Al-doped apatite type lanthanum silicates prepared by the Pechini method. Ceram Int 42:9640–9647

    CAS  Google Scholar 

  31. Li B, Liu W, Pan W (2010) Synthesis and electrical properties of apatite-type La10Si6O27. J Power Sources 195:2196–2201

    CAS  Google Scholar 

  32. Muresan LE, Perhaita I, Prodan D, Borodi G (2018) Studies on terbium doped apatite phosphors prepared by precipitation under microwave conditions. J Alloy Compd 755:135–146

    CAS  Google Scholar 

  33. Perhaita I, Muresan LE, Silipas DT, Tudoran LB (2019) Comparative study on blue-turquoise silicate apatite phosphors prepared via different synthesis routes. J Sol–Gel Sci Technol 89(3):807–819

    CAS  Google Scholar 

  34. Moeller T, Kremers HE (1945) The basicity of scandium, yttrium and the rare earth elements. Chem Rev 37:74–159

    Google Scholar 

  35. Yapryntsev AD, Skogareva LS, Gol’dt AE, Baranchikov AE, Ivanov VK (2015) Synthesis of a peroxo derivative of layered yttrium hydroxide. Russ J Inorg Chem 60(9):1027–1033

    CAS  Google Scholar 

  36. Seaverson LM, Luo S-Q, Chien P-L, Mcclelland JF (1986) Carbonate associated with hydroxide sol-gel processing of yttria: an infrared spectroscopic study. J Am Ceram Soc 69(5):423–429

    CAS  Google Scholar 

  37. Qin X, Zhou G, Yang H, Yang Y, Zhang J, Wang S (2010) Synthesis and upconversion luminescence of monodispersed, submicron-sized Er3+:Y2O3 spherical phosphors. J Alloy Compd 493:672–677

    CAS  Google Scholar 

  38. Materials Studio Modeling Environment, V8.0.0.843, Dassault Systèmes BIOVIA, San Diego, 2014

  39. Pascuta P, Vladescu, Borodi G, Culea E, Tetean R (2011) Structural and magnetic properties of zinc ferrite incorporated in amorphous matrix. Ceram Int 37:3343–3349

    CAS  Google Scholar 

  40. Brinker CJ, Scherrer GW (1990) Sol gel science, the physics and chemisty of sol gel processing. Academic Press, Boston

  41. Giang LTK, Anh TK, Marciniak L, Hreniak D, Strek W, Lojkowski W, Minh LQ (2015) Preparation and characterization of Yttrium hydroxide and oxide doped with rare earth ions (Eu3+, Tb3+) nano one dimensional. Phys Procedia 76:73–79

    CAS  Google Scholar 

  42. McIntyre LJ, Jackson LK, Fogg AM (2008) Synthesis and anion exchange chemistry of new intercalation hosts containing lanthanide cations, Ln2(OH)5(NO3) xH2O (Ln -Y, Gd–Lu). J Phys Chem Solids 69:1070–1074

    CAS  Google Scholar 

  43. Moscardini D’Assun L, Ionashiro M, Rasera DE, Giolito I (1993) Thermal decomposition of the hydrated basic carbonates of lanthanides and yttrium in CO2 atmosphere. Thermochim Acta 219:225–233

    Google Scholar 

  44. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    CAS  Google Scholar 

  45. Webb PA, Orr C (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corp., Norcross, USA

  46. Snyder RL (1992) The use of reference intensity ratios in X-ray quantitative analysis. Powder Diffr 7:186–193

    CAS  Google Scholar 

  47. Muresan LE, Oprea BF, Cadis AI, Perhaita I, Ponta O (2014) Studies on Y2SiO5:Ce phosphors prepared by gel combustion using new fuels. J Alloys Compd 615:795–803

    CAS  Google Scholar 

  48. Mote V, Purushotham Y, Dole B (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys 6:1–8

    Google Scholar 

  49. Kraus W, Nolze G (1996) Powder Cell—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Cryst 29:301–303

    CAS  Google Scholar 

  50. Yu R, Li H, Ma H, Wang C, Wang H (2014) A new blue-emitting phosphor of Ce3+-activated fluorosilicate apatite Ba2Y3[SiO4]3F. J Am Ceram Soc 97(40):1151–1156

    CAS  Google Scholar 

  51. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer-Verlag, Berlin Heidelberg

  52. Singh V, Singh N, Pathak MS, Singh PK, Natarajan V (2018) Tb3+ doped Ca2La8(SiO4)6O2 oxyapatite phosphors. Optik 171:356–362

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Muresan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perhaita, I., Muresan, L.E., Barbu Tudoran, L. et al. Synthesis of silicate apatite phosphors with enhanced luminescence via optimized precipitation technique through pH control. J Sol-Gel Sci Technol 96, 498–510 (2020). https://doi.org/10.1007/s10971-020-05400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05400-1

Keywords

Navigation