Skip to main content
Log in

Techniques for characterizing the mechanical properties of aerogels

  • Invited Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, we present the different characterization techniques used to measure the mechanical properties of silica aerogels. The mechanical behavior of aerogels is generally described in terms of elastic and fragile materials (such as glasses or ceramics) but also in terms of plastic media in compression testing. Because of these very different mechanical behaviors, several types of characterization techniques are proposed in the literature. We first describe the dynamic characterization techniques such as ultrasounds, Brillouin scattering, dynamic mechanical analysis (DMA) to measure the elastic properties: Young’s modulus (E), shear modulus (G), Poisson ratio (υ) but also attenuation and internal friction. Thanks to "static" techniques such as three-point bending, uniaxial compression, compression we also access to the elastic modulus (E) and to the rupture strength (σ). The experimental results show that the values of the elastic and fracture moduli measured are several orders of magnitude lower than those of a material without porosity are. With regard to the brittleness characteristics, Weibull's analysis is used to show the statistical nature of the fracture resistance. We also present the SENB (Single Edge Notched Beam) technique to characterize toughness (KIC) and the stress corrosion mechanisms, which are studied in ambient conditions and temperature by the double cleavage drilled compression experiment (DCDC). In the last part of the paper, we show how, during the isostatic compression test, aerogels behave like plastic materials. The data allow calculating the bulk modulus (K), the amplitude of the plastic deformation and the yield strength (σel), which is the boundary between the elastic and plastic domains. These different techniques allow understanding which parameters influence the overall mechanical behavior of aerogels, such as pore volume, but also pore size, internal connectivity and silanol bounds content. It is shown that the pore size plays a very important role; pores can be considered as flaws in the terms of fracture mechanics.

Highlights

  • We present the different characterization techniques used to measure the mechanical properties of silica aerogel.

  • Their mechanical properties are several orders of magnitude lower than those of dense materials.

  • The porosity of aerogels can be tailored and the mechanical properties in relation with the structure and texture are investigated experimentally over the entire porosity range (0–99%).

  • Pore volume, pore size, internal connectivity and silanol bounds content influence the aerogels mechanical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Gross J, Fricke J (1992) Ultrasonic velocity measurements in silica, carbon and organic aerogels. J Non-Cryst Solids 145:217–222

    CAS  Google Scholar 

  2. Nicolaon GA, Teichner SJ (1968) New preparation process for silica xerogels and aerogels and their textural properties. Bull Soc Chim Fr 5:1900–1906

    Google Scholar 

  3. Fricke J (1992) Aerogels and their applications. J Non-Cryst Solids 147–148:356–362

    Google Scholar 

  4. Schaeffer DW, Keefer KD (1986) Structure of random porous materials: silica aerogel. Phys Rev Lett 56:2199–2202

    Google Scholar 

  5. Woignier T, Phalippou J, Pelous J, Courtens E (1990) Different kinds of fractal structures in silica aerogels. J Non-Cryst Solids 121:198–201

    CAS  Google Scholar 

  6. Brinker J, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press Inc, San Diego, CA, USA

    Google Scholar 

  7. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New York, NY

    Google Scholar 

  8. Baetens BPJR, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energy Build 43:761–769

    Google Scholar 

  9. Nagahara H, Suginouchi T, Hashimoto M (2006) Acoustic properties of nanofoam and its applied air-borne ultrasonic transducers. Proc IEEE Ultrason Symp 3:1541–1544

    Google Scholar 

  10. Teichner S, Nicolaon G, Vicarini G, Gardes G (1976) Inorganic oxide aerogels. Adv colloid. Interface 5:245–273

    CAS  Google Scholar 

  11. Standeker S, Novak Z, Knez Z (2009) Removal of BTEX vapours from waste gas streams using silica aerogels of different hydrophobicity. J Hazard Mater 165:1114–1118

    CAS  Google Scholar 

  12. Alatalo SM, Pileidis F, Mäkilä E, Sevilla M, Repo E, Salonen J, Sillanpää M, Titirici MM (2015) Versatile cellulose-based carbon aerogel for the removal of both cationic and anionic metal contaminants from water. ACS Appl Mater Interfaces 7(46):25875–25883

    CAS  Google Scholar 

  13. Maleki H (2016) Recent advances in aerogels for environmental remediation applications. Chem Eng J 300:98–118

    CAS  Google Scholar 

  14. Yin W, Rubenstein DA (2011) Biomedical applications of aerogels. In: Aegerter MA, Leventis N, Koebel MM (ed) Aerogels handbook. Springer, New York, NY, USA, p 681–694

    Google Scholar 

  15. Smirnova I (2011) Pharmaceutical applications of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, NY, USA, p 695–718

    Google Scholar 

  16. Santos A, Toledo-Fernández J, Mendoza-Serna R, Gago-Duport L, De la Rosa-Fox N, Piñero M, Esquivias L (2007) Chemically active silica aerogel-wollastonite composites for CO2 fixation by carbonation reactions. Ind Eng Chem 46:103–107

    CAS  Google Scholar 

  17. Santos A, Ajbary M, Kherbeche A, Piñero M, De la Rosa-Fox N, Esquivias L (2008) Fast CO2 sequestration by aerogel composites. J Sol-Gel Sci Technol 45:291–297

    CAS  Google Scholar 

  18. Aravind PR, Shajesh P, Mukundan P, Krishna Pillai P, Warrier KGK (2008) Non- supercritically dried silica- silica composites aerogel and its possible application for confining nuclear wastes. J Sol-Gel Sci Technol 46:146–151

    CAS  Google Scholar 

  19. Reynes J, Woignier T, Phalippou J (2001) Permeability measurements in composites aerogels: application to nuclear waste storage. J Non-Cryst Solids 285:323–327

    CAS  Google Scholar 

  20. Woignier T, Reynes J, Phalippou J, Dussossoy JL (2000) Nuclear waste storage in gel-derived materials. J Sol-Gel Sci Technol 19(1–3):833–837

    CAS  Google Scholar 

  21. Jones SM, Sakamoto J (2011) Applications of aerogels in space exploration. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, NY, USA, p 721–746

    Google Scholar 

  22. Hörz F, Zolensky ME, Bernhard RP, Seeb TH, Warren JL (2000) Impact features and projectile residues in aerogel exposed on mir. Icarus 147(2):559–579

    Google Scholar 

  23. Tsou P (1995) Silica aerogel captures cosmic dust intact. J Non-Cryst Solids 186:415–427

    CAS  Google Scholar 

  24. Marlière C, Woignier T, Dieudonné P, Primera J, Lamy M, Phalippou J (2011) Two fractal structure in aerogel. J Non-Cryst Solids 285:175–181

    Google Scholar 

  25. Torquato S (2002) Random heterogeneous materials. microstructure and macroscopic properties. Springer, New York, NY, USA

    Google Scholar 

  26. Gibson LJ, Ashby MF (1988) Cellular solids structure and properties. Pergamon press, Oxford, UK

    Google Scholar 

  27. Rice RW (1998) Porosity of ceramics properties and applications. Marcel Dekker Inc, New York, NY, USA

    Google Scholar 

  28. Calemczuck R, de Goer AM, Salce B, Maynard R, Zarembowitch A (1987) Low temperature properties of silica aerogels. Europhys Lett 3:1205–1211

    Google Scholar 

  29. Gross J, Reichenauer G, Fricke J (1988) Mechanical properties of SiO2 aerogels. J Phys D Appl Phys 21:1447–1451

    CAS  Google Scholar 

  30. Lemay JD, Tillotson TM, Hrubesch HW, Pekala RW (1990) Microstructural dependence of aerogel mechanical properties. Mater Res Soc Symp Proc 180:321–328

    CAS  Google Scholar 

  31. Woignier T, Phalippou J, Hdach H, Larnac G, Pernot F, Scherer GW (1992) Evolution of mechanical properties during the alcogel-aerogel-glass process. J Non-Cryst Solids 147–148:672–680

    Google Scholar 

  32. Scherer GW (1992) Crack tip stress in gels. J Non-Cryst Solids 144:210–214

    Google Scholar 

  33. Zarzycki J (1988) Critical stress intensity factors of wet gels. J Non-Cryst Solids 100:359–363

    CAS  Google Scholar 

  34. Evans AG (1974) Slow crack in brittle materials under dynamic loading conditions. Int J Fract 10:251–261

    CAS  Google Scholar 

  35. Alaoui A, Woignier T, Pernot F, Phalippou J (2000) Stress intensity factors in silica alcogels and aerogels in aerogels. J Non-Cryst Solids 265:29–36

    Google Scholar 

  36. Evans AG, Tappin G (1972) Effects of microstructure on the stress propagate inherent flaws. Proc Br Ceram Soc 23:275–296

    Google Scholar 

  37. Griffith AA (1920) The phenomenom of rupture and flow in solids Philos. Trans R Soc Lond Ser A 221:168–198

    Google Scholar 

  38. Despetis F, Etienne P, Phalippou J (2000) Crack speed in ultraporous brittle amorphous material. Phys Chem Glasses 41:104–106

    CAS  Google Scholar 

  39. Pirard R, Blacher R, Brouers S, Pirard JP (1995) Interpretation of mercury porosimetry applied to aerogels. J Mater Res 10:2114–2119

    CAS  Google Scholar 

  40. Duffours L, Woignier T, Phalippou J (1995) Plasticity of aerogels under isostatic pressure. J Non-Cryst Solids 186:321–327

    CAS  Google Scholar 

  41. Scherer GW, Smith DM, Qiu X, Anderson JM (1995) Compression of aerogels. J Non-Cryst Solids 186:316–320

    CAS  Google Scholar 

  42. Leventis N (2007) Three-dimensional core-shell superstructure: mechanically strong aerogels. Acc Chem Res 40:874–884

    CAS  Google Scholar 

  43. Lu H, Luo H, Leventis N (2011) Mechanical characterization of aerogels. In: Aegerter MA, Leventis N, Koebel MM (ed) Aerogels handbook. Springer, New York, NY, p 499–535

    Google Scholar 

  44. Prassas M, Woignier T, Phalippou J (1990) Glasses from aerogels I. J Mater Sci 25:3110–3117

    Google Scholar 

  45. Woignier T, Phalippou J, Prassas M (1990) Glasses from aerogels part 2: The aerogel glass transformation. J Mater Sci 25:3118–3126

    CAS  Google Scholar 

  46. Woignier T, Phalippou J, Quinson JF, Pauthe M, Repellin-Lacroix M, Scherer GW (1994) The sintering of silica aerogels studied by thermoporometry. J Sol-Gel Sci Technol 2:277–281

    CAS  Google Scholar 

  47. Scherer GW, Calas S, Sempéré R (1998) Sintering aerogels. J Sol-Gel Sci Technol 13:937–943

    CAS  Google Scholar 

  48. Scherer GW (1977) Sintering of low density glasses: I. Theory. J Am Ceram Soc 60:236–239

    CAS  Google Scholar 

  49. Gronauer M, Fricke J (1986) Acoustic properties of microporous SiO2-aerogel. Acustica 59:177–181

    CAS  Google Scholar 

  50. Murtagh MJ, Graham EK, Pantano CJ (1986) Elastic moduli of silica gels prepared with tetraethoxysilane. J Am Ceram Soc 69(ll):775–19

    CAS  Google Scholar 

  51. Dong W, Faltens T, Pantell M, Simon D, Thompson T, Dong W (2009) Acoustic properties of organic/inorganic composite aerogels. MRS Proc 1188:1188–LL07-02. https://doi.org/10.1557/PROC-1188-LL07-02

    Article  Google Scholar 

  52. Gibiat V, Lefeuvre O, Woignier T, Pelous J, Phalippou J (1995) Acoustic properties and potential applications of silica aerogels. J Non-Crystalline Solids 186:244–245

    CAS  Google Scholar 

  53. Forest L, Gibiat V, Woignier T (1998) Biot’s theory of acoustic propagation in porous media applied to aerogels and alcogels. J Non-Crystalline Solids 225:287–292

    CAS  Google Scholar 

  54. Guild MD, García-Chocano VM, Sánchez-Dehesa J, Martin TP, Calvo DC, Orris GJ (2016) On the use of aerogel as a soft acoustic metamaterial for airborne sound. Phys Rev Appl 5(3):0340121. 1–12

    Google Scholar 

  55. Forest, Gibiat V, Hooley A (2001) Impedance matching and acoustic absorption in granular layers of silica aerogels. J Non-Crystalline Solids 285(1-3):230–235

    CAS  Google Scholar 

  56. Woignier T, Phalippou J, Pelous J, Vacher R, Courtens E (1987) Elastic properties of silica aerogels. J Non-Cryst Solids 95–96:1197–1202

    Google Scholar 

  57. Woignier T, Phalippou J, Sempere R, Pelous J (1988) Analysis of the elastic behavior of silica aerogels taken as a percolative system. J Phys Fr 49:289–293

    CAS  Google Scholar 

  58. Emmerling A, Fricke J (1997) Scaling properties and structure of aerogels. J Sol-Gel Sci Technol 8:781–788

    CAS  Google Scholar 

  59. Ma HS, Prevost JH, Jullien R, Scherer GW (2001) Computer simulation of mechanical structure-property relationship of aerogels. J Non-Cryst Solids 285:216–221

    CAS  Google Scholar 

  60. Poelz G, Riethmiiller R (1982) Preparation of silica aerogel for Cherenkov counters. Nucl Instrum Methods 195:491–503

    CAS  Google Scholar 

  61. Wang P, Beck A, Korner W, Scheller H, Fricke J (1994) Density and refractive index of silica aerogels after low- and high-temperature supercritical drying and thermal treatment. J Phys D 27:414–418

    CAS  Google Scholar 

  62. Sandercock JR (1970) Brillouin scattering study of SbSI using a double-passed, stabilised scanning interferometer. Opt Commun 2:73–6

    CAS  Google Scholar 

  63. Sandercock JR (1976) Simple stabilization scheme for maintenance of mirror alignment in a scanning Fabry–Perot interferometer. J Phys E 9:566–9

    Google Scholar 

  64. Sussner H, Vacher R (1979) High precision measurement of brillouin-scattering frequencies. Appl Opt 18:3815–3818

    CAS  Google Scholar 

  65. Vacher R, Shickfus MV, Hunklinger S (1980) A fully stabilized Brillouin spectrometer with high contrast and high resolution. Rev Sci Instrum 51:288–91

    CAS  Google Scholar 

  66. Schaefer DW, Brinker CJ, Richter D, Farago B, Frick B (1990) Dynamics of weakly connected solids: silica aerogels. Phys Rev Lett 64:2316–9

    CAS  Google Scholar 

  67. Vacher R, Woignier T, Pelous J, Courtens E (1988) Structure and self-similarity of silica aerogels. Phys Rev B 37:6500–3

    CAS  Google Scholar 

  68. Montagna M (2018) Characterization of sol–gel materials by Raman and Brillouin spectroscopies. In: Klein L, Aparicio M, Jitianu A (eds) Handbook of sol-gel science and technology. Springer, Springer International Publishing AG, part of Springer Nature 2018. 1153–1182 https://doi.org/10.1007/978-3-319-32101-1_34

    Google Scholar 

  69. Courtens E, Pelous J, Phalippou J, Vacher R, Woignier T (1987) Brillouin-scattering measurements of phonon–fracton crossover in silica aerogels. Phys Rev Lett 58:128–31

    CAS  Google Scholar 

  70. Courtens E, Vacher R, Pelous J, Woignier T (1988) Observation of fractons in silica aerogels. Europhys Lett 6:245–50

    CAS  Google Scholar 

  71. Levelut C, Anglaret E, Pelous J (1998) Brillouin scattering of aerogels densified under uniaxial pressure. J Non-Cryst Solids 225:272–6

    CAS  Google Scholar 

  72. Smith CC, Internal friction and ultrasonic attenuation in solids. In: Proceedings of The Third European Conference University of Manchester, England, Pergamon Press, Oxford, 18–20 July 1980

  73. Mc Guire M, Fine ME (1993) Nondestructive detection of fatigue cracks in PM 304 stainless steel by internal friction and elasticity. J Mater Res 8(9):2216–2223

    Google Scholar 

  74. Gross J, Goswin R, Gerlach R, Fricke J (1989) Mechanical properties of SiO2 – aerogels. J Rev Phys Appl 24:C4-185–190

    Google Scholar 

  75. Gross J, Fricke J, Pekala W, Hrubesh LW (1992) Elastic nonlinearity of aerogels. Phys Rev B 45:12774–12777

    CAS  Google Scholar 

  76. Perin L, Faivre A, Calas-Etienne S, Woignier T (2004) Nanostructural damage associated with isostatic compression of silica aerogels. J Non-Cryst Solids 333:68–73

    CAS  Google Scholar 

  77. Pirard R, Pirard JP (1997) Aerogel compression theoretical analysis. J Non-Cryst Solids 212:262–267

    CAS  Google Scholar 

  78. Woignier T, Primera J (2011) Mechanical behaviour of nano composites aerogels. J Sol-Gel Sci Technol 58:385–393

    CAS  Google Scholar 

  79. Woignier T, Primera J, Alaoui A, Etienne P, Despestis F, Calas-Etienne S (2015) Mechanical properties and brittle behavior of silica aerogels. Gels 1:256–275

    Google Scholar 

  80. Marlière C, Despetis F, Etienne P, Woignier T (2001) Very large-scale stucture in sintered silica aerogels as evidenced by AFM and USAXS experiments. J Non-Cryst Solids 285(1-3):148–153

    Google Scholar 

  81. Tucker J (1945) Effect of length specimens on the strength of compression test. Am Soc Test Mater 45:976–986

    Google Scholar 

  82. Newman K, Lachance L (1964) The testing of brittle materials under uniform uniaxial compressive stress. Proc Am Soc Test Mater 64:1044–1067

    Google Scholar 

  83. Alaoui A, Woignier T, Scherer GW, Phalippou J (2008) Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel. J Non-Crystalline Solids 354:4556–4561

    CAS  Google Scholar 

  84. Fawaz SA, Palazotto AN, Wang CS (1992) Axial tensile and compressive properties of high-performance polymeric fibre. Polymer 33(1):100–105

    CAS  Google Scholar 

  85. Oyen ML, Cook RF (2009) A practical guide for analysis of nanoindentation data. J Mech Behav Biomed Mater 2:396–407

    Google Scholar 

  86. Malzbender J, De With G (2000) Elastic modulus, hardness and fracture thoughness of SiO2-filled methyltrimethoxysilane coatings on glass substrates. J Non-Cryst Solids 265:51–60

    CAS  Google Scholar 

  87. Hamza AV, Satcher Jr. JH, Worsley Lawrence MA, Kucheyev SO (2009) Depth-sensing indentation of low-density brittle nanoporous solids. Acta Materialia 57:3472–3480

    Google Scholar 

  88. Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1:601–609

    Google Scholar 

  89. Hainsworth SV, Chandler HW, Page TF (1996) Analysis of nanoindentation load-displacement loading curves. 11 (8):1987–1995

  90. Loubet JL, Georges JM, et Meille G (1986) Vickers indentation curves of elastoplastic materials, in Microindentation techniques. In: Blau PJ, Lawn BR (eds) Materials science and engineering. American Society for Testing and Materials, Philadelphia, p 72–89

    Google Scholar 

  91. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    CAS  Google Scholar 

  92. Johnson KL (1985) Contact mechanics. University Press, Cambridge

    Google Scholar 

  93. Tabor D (1951) The hardness of solids. Clarendon Press, Oxford

    Google Scholar 

  94. Faivre A, Duffours L, Colombel P, Despetis F (2019) Mechanical behaviour of aerogels and composite aerogels submitted to specific penetration tests. J Sol-Gel Sci Tech 90(1):67–75

    CAS  Google Scholar 

  95. Woignier T, Reynes J, Hafidi Alaoui A, Beurroies I, Phalippou J (1998) Different kinds of structure in aerogels: relationships with the mechanical properties. J Non-Cryst Solids 241:45–52

    CAS  Google Scholar 

  96. Brownlee DE, Tsou P, Anderson JD, Hanner MS, Newburn RL, Sekanina Z, Clark BC, Hörz F, Zolensky ME, Kissel J, McDonnell JAM, Sandford SA, Tuzzolino AJ (2003) Stardust: comet and interstellar dust sample return mission. J Geophys Res 108(E10):8111

    Google Scholar 

  97. Tobin M, Andrew J, Haupt D, Mann K, Poco J, Satcher J, Curran D, Tokheim R, Eder D (2003) Using silica aerogel to characterize hypervelocity shrapnel produced in high power laser experiments. Int J Impact Engng 29:713–721

    Google Scholar 

  98. Paris PC (1998) Cleavage fracture: an overview of some historical aspecst to honor GR Irwin. Eng Fract Mech 59(4):411–41

    Google Scholar 

  99. Woignier T, Phalippou J (1988) Mechanical strength of silica aerogels. J Non-Cryst Solids 100:404–408

    CAS  Google Scholar 

  100. Weibull WA (1951) Statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  101. Sullivan JD, Lauzon PH (1986) Experimental probability estimators for Weibull plots. J Mater Sci Lett 5:1245–1247

    Google Scholar 

  102. Toki M, Miyashita S, Takenechi T, Kanabe S, Kochi A (1988) A large-size silica glass produced by a new sol-gel process. J Non-Crystalline Solids 100:479–482

    CAS  Google Scholar 

  103. Woignier T, Despetis F, Alaoui A, Etienne P, Phalippou J (2000) J Sol Gel Sci Technol 19:163–169

    CAS  Google Scholar 

  104. Alaoui A, Woignier T, Pernot F, Phalippou J (2000) J Non Cryst Solids 265:29

    Google Scholar 

  105. Chermant JL, Osterstock F, Vadam G (1980) Etude critique de la mesure de KIC dans le cas de quelques matériaux verriers. Verres Refract 34:624–636. In French

    Google Scholar 

  106. Etienne P, Phalippou J, Woignier T, Alaoui A (1995) Slow crack growth in aerogels. J Non-Cryst Solids 188:19–26

    CAS  Google Scholar 

  107. Wiederhorn MA (1972) Chemical interpretation of static fatigue. J Am Ceram Soc 55:81–85

    CAS  Google Scholar 

  108. Michalske TA, Bunker BC (1984) Slow fracture model based on strained silicate structures. J Appl Phys 56(10):2686–2693

    CAS  Google Scholar 

  109. Wiederhorn SM (1974) Subcritical crack growth in ceramics. In: Bradt, RC, Hasselman, DPH, Lange, FF (eds) Fracture mechanics of ceramics. vol 2. Plenum Press, New York, NY, USA, p 613–246

    Google Scholar 

  110. Janssen C (1974) Specimen for fracture mechanics studies on glass. Ceram Soc Jpn 12:8–13. https://doi.org/10.1051/rphysap:01977001205080300

    Article  Google Scholar 

  111. Despetis F, Calas S, Etienne P, Phalippou J (2001) Effect of oxidation treatment on the crack propagation rate of aerogels. J Non-Cryst Solids 285:251–255

    CAS  Google Scholar 

  112. Despetis F, Calas-Etienne S, Etienne P (2019) Slow crack growth in silica aerogels: a review. J Sol-Gel Sci Technol 90:20–27. https://doi.org/10.1007/s10971-018-4857-x

    Google Scholar 

  113. Suratwala TI, Steele RA (2003) Anomalous temperature dependence of sub-critical crack growth in silica glass. J Non-Cryst Solids 316:174–182

    CAS  Google Scholar 

  114. Wiederhorn SM (1967) Influence of water vapor on crack propagation in soda-lime glass. J Am Ceram Soc 50(08):407–414

    CAS  Google Scholar 

  115. Scherer GW (1992) Bending of gel beams: method of characterizing mechanical properties and permeability. J Non-Cryst Solids 142(1-2):18–35

    CAS  Google Scholar 

  116. Woignier T, Scherer GW, Allaoui A (1994) Stress in aerogel during depressurization of autoclave: II. Silica gels. J Sol-Gel Sci Technol 3:141–150

    CAS  Google Scholar 

  117. Scherer G (1994) Relaxation of a viscoelastic gel bar: I. theory. J Sol Gel Sci Technol 2:169–175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Woignier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woignier, T., Primera, J., Alaoui, A. et al. Techniques for characterizing the mechanical properties of aerogels. J Sol-Gel Sci Technol 93, 6–27 (2020). https://doi.org/10.1007/s10971-019-05173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05173-2

Keywords

Navigation