Skip to main content
Log in

Experimental deconvolution of depressurization from capillary shrinkage during drying of silica wet-gels with SCF CO2 why aerogels shrink?

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silica aerogels are prepared by drying wet-gels under conditions that eliminate surface tension forces, typically by exchanging the pore-filling solvent with liquid or supercritical fluid (SCF) CO2 that is vented off like a gas. Thereby, silica wet-gels should not shrink during drying, but they do. According to the literature, most shrinkage (~71%) happens during depressurization of the autoclave. Here, based on prior literature, and working with wet-gels obtained via base-catalyzed gelation of tetramethylorthosilicate (TMOS), the basic hypothesis was that depressurization shrinkage takes place at the primary/secondary particle level. For this to happen there has to be available space to accommodate merging secondary particles, and a driving force. Secondary particles are mass fractals (by SAXS) and their empty space can accommodate primary particles from neighboring assemblies. The driving force was assumed to be H-bonding developing between surface silanols as soon as all fluids are removed from the pores. That hypothesis was put to test by replacing gelation solvents with nonhydrogen bonding toluene or xylene. Indeed, while the total drying shrinkage of toluene- or xylene-filled wet-gels was equal to that observed with aerogels obtained from acetone-filled wet-gels (~8–9%), the major part of that shrinkage (~74%) was transferred to the wet-gel stage. The remaining shrinkage (~26%) was assigned to interfacial tension forces between the pore-filling solvent and liquid or SCF CO2. Having transferred the major part of drying shrinkage to the wet-gel stage has technological implications, because it is easier to manipulate gels at that stage. Furthermore, our results underline that optimization of the drying process should take into account the fact that drying of silica wet-gels into aerogels is a two-stage moving boundary problem.

Highlights

  • The major part of the shrinkage during drying silica wet-gels to aerogels with SCF CO2 is associated with the depressurization phase of the drying process.

  • A part of the shrinkage equal to that reported as depressurization shrinkage (70–75%) has been transferred to the wet-gel phase of processing.

  • The remaining part of the drying shrinkage has been assigned to interfacial tension.

  • The practical significance of those findings is related to the fact that it is easier to control shrinkage at the wet-gel phase of processing.

  • From a theoretical perspective, drying with SCF CO2 is a two-stage moving boundary problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 2

Similar content being viewed by others

References

  1. Pierre AC, Pajonk GM (2012) Chem Rev 102:4243–4265

    Article  CAS  Google Scholar 

  2. Kistler SS (1931) Nature 127:741–741

    Article  CAS  Google Scholar 

  3. Smith DM, Scherer GW, Anderson JM (1995) J Non-Cryst Solids 188:191–206

    Article  CAS  Google Scholar 

  4. Kirkbir F, Murata H, Meyers D, Chaudhuri SR (1998) J Non-Cryst Solids 225:14–18

    Article  CAS  Google Scholar 

  5. Iswar S, Malfait WJ, Balog S, Winnefeld F, Lattuada M, Koebel MM (2017) Microporous Mesoporous Mater 241:293–302

    Article  CAS  Google Scholar 

  6. Satha H, Atamnia K, Despetis F (2013) J Biomater Nanobiotechnol 4:17–21

    Article  CAS  Google Scholar 

  7. Hæreid S, Nilsen E, Ranum V, Einarsrud MA (1997) J Sol-gel Sci Technol 8:153–157

    Google Scholar 

  8. Mohite DP, Larimore ZJ, Lu H, Mang JT, Sotiriou-Leventis C, Leventis N (2012) Chem Mater 24:3434–3448

    Article  CAS  Google Scholar 

  9. Leventis N (2007) Acc Chem Res 40:874–884

    Article  CAS  Google Scholar 

  10. Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-MM (2002) Nano Lett 2:957–960

    Article  CAS  Google Scholar 

  11. He F, Zhao H, Qu X, Zhang C, Qiu W (2009) J Mater Process Technol 209:1621–1626

    Article  CAS  Google Scholar 

  12. Reichenauer G (2004) J Non-Cryst Solids 350:189–195

    Article  CAS  Google Scholar 

  13. Mitsiuk BM, Vysotsky ZZ, Polyakov MV (1964) Dokl Akad Nauk SSSR 155:1404–1406

    Google Scholar 

  14. Stein DJ, Maskara A, Hæreid S, Anderson J, Smith DM (1994) In: Cheetham AK, Brinker CJ, Mecartney MA, Sanchez C (eds) Better Ceramics Through Chemistry VI. Materials Research Society: Pittsburgh, PA, p 643–648

  15. Rao AV, Bhagat SD, Hirashima H, Pajonk GM (2006) J Colloid Inter Sci 300:279–285

    Article  CAS  Google Scholar 

  16. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) Adv Mater 19:1589–1593

    Article  CAS  Google Scholar 

  17. Prakash SS, Brinker CJ, Hurd AJ, Rao SM (1995) Nature 374:439–443

    Article  CAS  Google Scholar 

  18. Rangarajan B, Lira CT (1992) Mat Res Soc Symp Proc 271:559–566

    Article  CAS  Google Scholar 

  19. Bohannan EW, Gao X, Gaston KR, Doss CD, Sotiriou-Leventis C, Leventis N (2002) J Sol-gel Sci Technol 23:235–245.

  20. Mandal C, Donthula S, Soni R, Bertino M, Sotiriou-Leventis C, Leventis N (2019a) J Sol-gel Sci Technol 90:127–139

    Article  CAS  Google Scholar 

  21. Mandal C, Donthula S, Majedi Far H, Saeed AM, Sotiriou-Leventis C, Leventis N (2019b) J Sol-gel Sci Technol 92:84–100

    Article  CAS  Google Scholar 

  22. Snook IK, van Megan W (1981) J Chem Soc Faraday Trans 2 77:181–190

    Article  Google Scholar 

  23. van Megan W, Snook IK (1979) J Chem Soc Faraday Trans 2 75:1095–1102

    Article  Google Scholar 

  24. Ash SG, Everett DH, Radke C (1973) J Chem Soc Faraday Trans 2 69:1256–1277

    Article  Google Scholar 

  25. Dahmouche K, Santilli CV, Chaker JA, Pulcinelli SH, Craievich AF (1999) J Appl Phys 38:172–175

    Article  CAS  Google Scholar 

  26. Kawaguchi T, Hishikura H, Iura J (1988) J Non-Cryst Solids 100:220–225

    Article  CAS  Google Scholar 

  27. Mohite DP, Mahadik-Khanolkar S, Luo H, Lu H, Sotiriou-Leventis C, Leventis N (2013) Soft Matter 9:1531–1539

    Article  CAS  Google Scholar 

  28. Leventis N, Elder IA, Rolison DR, Anderson ML, Merzbacher CI (1999) Chem Mater 11:2837–2845

    Article  CAS  Google Scholar 

  29. Rewatkar PM, Taghvaee T, Saeed AM, Donthula S, Mandal C, Chandrasekaran N, Leventis T, Shruthi TK, Sotiriou-Leventis C, Leventis N (2018) Chem Mater 30:1635–1647

    Article  CAS  Google Scholar 

  30. Cabrera Y, Cabrera A, Larsen FH, Felby C (2016) Holzforschung 70:709–718

  31. Ilavsky J, Jemian PR (2009) J Appl Cryst 42:347–353

    Article  CAS  Google Scholar 

  32. Beaucage G (1995) J Appl Crystallogr 28:717–728

    Article  CAS  Google Scholar 

  33. Beaucage G (1996) J Appl Crystallogr 29:134–146

    Article  CAS  Google Scholar 

  34. Mang JT, Son SF, Hjelm RP, Peterson PD, Jorgensen BS (2007) J Mater Res 22:1907–1920

    Article  CAS  Google Scholar 

  35. Agbabiaka A, Wiltfong M, Park C (2013) J Nanomater 640436, https://doi.org/10.1155/2013/640436

  36. Potton JA, Daniell GJ, Rainford BD (1998) J Appl Cryst 21:891–897

    Article  Google Scholar 

  37. Tatchev D, Kranold R (2004) J Appl Crystallogr 37:32–39

    Article  CAS  Google Scholar 

  38. Winter HH (1987) Polym Eng Sci 27:1698–1702

    Article  CAS  Google Scholar 

  39. Kim S-Y, Choi D-G, Yang S-M (2002) Korean J Chem Eng 19:190–196

    Article  CAS  Google Scholar 

  40. Raghavan SR, Chen LA, McDowell C, Khan SA, Hwang R, White S (1996) Polymer 37:5869–5875

    Article  CAS  Google Scholar 

  41. Muthukumar M (1989) Macromolecules 22:4656–4658

    Article  CAS  Google Scholar 

  42. KjØniksen A-L, Nyström B, Lindman B (1998) Macromolecules 31:1852–1858

    Article  Google Scholar 

  43. Borba A, Vareda JP, Durães L, Portugal A, Simões PN (2017) New J Chem 41:6742–6759

    Article  CAS  Google Scholar 

  44. Brinker CJ, Scherer GW (1990) Sol-gel science: The physics and chemistry of sol-gel processing, Chap 3. Academic Press Inc, San Diego, CA, p 97–233

    Google Scholar 

  45. Graf C (2018) Silica, Amorphous in Kirk-Othmer Encyclopedia of Chemical Technology, 5th edn. John Wiley & Sons, New York, NY, p 7

    Google Scholar 

  46. Innocenzi P (2003) J Non-Cryst Solids 316:309–319

    Article  CAS  Google Scholar 

  47. Bertoluzza A, Fagnano C, Morelli MA, Gottardi V, Guglielmi M (1982) J Non-Cryst Solids 48:117–128

    Article  CAS  Google Scholar 

  48. Almeida RM, Pantano CG (1990) J Appl Phys 68:4225–4232

    Article  CAS  Google Scholar 

  49. Chen J, Li T, Li X, Chou K, Hou X (2017) High Temp Mater Proc 36:607–613

    CAS  Google Scholar 

  50. McDonald RS (1958) J Am Chem Soc 62:1168–1178

    CAS  Google Scholar 

  51. Wu MK (1996) Aerosol Sci Technol 25:392–398

    Article  CAS  Google Scholar 

  52. Pirard R, Blacher S, Brouers F, Pirard JP (1995) J Mater Res 10:2114–2119

    Article  CAS  Google Scholar 

  53. Pfeifer P, Avnir D (1983) J Chem Phys 79:3558–3565

    Article  CAS  Google Scholar 

  54. Celis R, Cornejo J, Hermosin MC (1996) Clay Min 31:355–363

    Article  CAS  Google Scholar 

  55. Kobersein JT, Morra B, Stein RS (1980) J Appl Cryst 13:34–45

    Article  Google Scholar 

  56. https://www.dataphysics-instruments.com/Downloads/Surface-Tensions-Energies.pdf Accessed 16 May 2019

  57. http://www.ddbst.com/en/EED/PCP/SFT_C176.php Accessed 16 May 2019

  58. http://www.ddbst.com/en/EED/PCP/SFT_C1050.php Accessed 16 May 2019

  59. Majedi Far H, Rewatkar PM, Donthula S, Taghvaee T, Saeed AM, Sotiriou-Leventis C, Leventis N (2019) Macromol Chem Phys 220:1800333

    Article  CAS  Google Scholar 

  60. Saeed AM, Rewatkar PM, Majedi Far H, Taghvaee T, Donthula S, Mandal C, Sotiriou-Leventis C, Leventis N (2017) ACS Appl Mater Interfaces 9:13520–13536

    Article  CAS  Google Scholar 

  61. García-Gonzáleza CA, Camino-Reva MC, Alnaief M, Zetzl C, Smirnova I (2012) J Supercrit Fluids 66:297–306

    Article  CAS  Google Scholar 

  62. Ozbakr Y, Erkey C (2015) J Supercrit Fluids 98:153–166

    Article  CAS  Google Scholar 

  63. Lebedev AE, Katalevich AM, Menshutina NV (2015) J Supercrit Fluids 105:122–132

    Article  CAS  Google Scholar 

  64. Karamanis G, Dinh H, Waisbord N, Hodes M (2018) In: Proceedings of the 16th International Heat Transfer Conference, IHTC16-24239, China National Convention Center, Beijing, China

Download references

Acknowledgements

We thank the NSF under award no. 1530603 for financial support. We also thank Prof. Marc Hodes of Tufts University for fruitful discussions and the Materials Research Center of the Missouri University of Science and Technology for support with materials characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chariklia Sotiriou-Leventis or Nicholas Leventis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, C., Donthula, S., Rewatkar, P.M. et al. Experimental deconvolution of depressurization from capillary shrinkage during drying of silica wet-gels with SCF CO2 why aerogels shrink?. J Sol-Gel Sci Technol 92, 662–680 (2019). https://doi.org/10.1007/s10971-019-05124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05124-x

Keywords

Navigation