Skip to main content
Log in

Organic modified silica obtained from DBTL polycondensation catalyst for anticorrosive coating

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

DBTL as neutral polycondensation catalyst was employed to obtain organic modified silanes (ORMOSILs), which were studied as anticorrosive films for aluminum at saline corrosion. The ORMOSILs were synthesized using TEOS as silica precursor, different alkylalkoxysilanes (trimethoxy(methyl)silane, triethoxy(octyl)silane, 3-aminopropyl(triethoxy)silane and DBTL-catalyst were employed under the free solvent sol–gel process. Results of chemical characterization of ORMOSILs coatings show that under SEM technique coatings have homogenous films, and there are a crosslinking between silica and organic modified under the Infrared spectroscopy and 29Si CPMAS-NMR techniques. On the other hand, Brinell hardness and Pull-Off adhesion tests show that all ORMOSILs increase the aluminum surface hardness between 1 and 10%, and the ORMOSILs critical forces for adhesion are in the range of 106–132 N; therefore, the ORMOSILs coatings have an excellent adhesion to aluminum surface, furthermore, the saline corrosion test shows that organic modified silica avoid the pitting aluminum corrosion; corrosion rate decreases about 60–85%; the anticorrosive behavior according to modified-silica was determined as: SiO2–NH2 > SiO2–Me ∼ SiO2–Octyl.

Highlights

  • DBTL is proposed as poly-condensation catalyst between TEOS and alkylalkoxysilanes for the formation of anticorrosive coating.

  • ORMOSIL increases the hardness of aluminum surface.

  • DBTL forms ceramic hard coating with excellent adhesion.

  • ORMOSIL–DBTL diminishes the corrosion rate at 60–85%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Groysman A (2010) Corrosion for everybody. Springer, New York

    Book  Google Scholar 

  2. Sheng J, Xia J (2017) Construction and build. Materials 131:90–100

    Google Scholar 

  3. Speidel MO, Hyatt MV (1972) Stress-corrosion cracking of high-strength aluminum alloys. In: Fontana MG, Staehle RW (eds) Advances in corrosion science and technology, vol 2. Springer, Boston, MA

    Google Scholar 

  4. Gharavi F, Matori KA, Yunus R, Othman NK, Fadaeifard F (2015) J Mater Res Technol 4:314–322

    Article  Google Scholar 

  5. Donatus U, Thompson GE, Omotoyinbo OG, Alaneme KK, Aribo S, Agbabiaka OG (2017) Trans Nonferrous Met Soc China 27:55–62

    Article  Google Scholar 

  6. Zhang X, Zhou X, Ma Y, Thompson GE, Luo C, Sun Z, Zhang X, Tang Z (2016) Surf Interface Anal 48:745–749

    Article  Google Scholar 

  7. Zhang X, Zhou X, Hashimoto T, Liu B (2017) Mater Charact 130:230–236

    Article  Google Scholar 

  8. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, 2008 Toxicological Profile for Chromium. www.atsdr.cdc.gov/toxprofiles/tp7.pdf

  9. Balgude D, Sabins A (2012) J Sol-Gel Sci Technol 64:124–134

    Article  Google Scholar 

  10. Wang D, Bierwagen GP (2009) Prog Org Coat 64:327–338

    Article  Google Scholar 

  11. Figueira RB, Fontinha IR, Silva CJR, Pereira EV (2016) Coatings 6:12

    Article  Google Scholar 

  12. Figueira RB, Silva CJR, Pereira EV (2015) J Coat Technol Res 12:1–35

    Article  Google Scholar 

  13. Zea C, Barranco-García R, Alcántara J, Chico B, Morcillo M, de la Fuente D (2017) J Coat Technol Res 14:869–878

    Article  Google Scholar 

  14. Borisova D, Mohwald H, Shchukin DG (2011) ACS Nano 5:1939–1946

    Article  Google Scholar 

  15. Falcón JM, Otubo LM, Aoki IV (2016) Surf Coat Technol 303:319–329

    Article  Google Scholar 

  16. More AP, Mhaske ST (2016) Arab J Sci Eng 41:2239–2248

    Article  Google Scholar 

  17. Hench LL, West JK (1990) Chem Rev 90:33–72

    Article  Google Scholar 

  18. Ko EI (1999) Sol-gel process. In: Ertl G, Knözinger G, Weitkamp J (eds) Preparation of solid catalysts. Wiley-VCH Verlag GmbH, Weinheim, Germany

    Google Scholar 

  19. Salazar-Hernández C, Zárraga R, Alonso S, Sugita S, Calixto S, Cervantes J (2009) J Sol-Gel Sci Technol 49:301–310

    Article  Google Scholar 

  20. Salazar-Hernández C, Alonso S, Cervantes J (2010) J Sol-Gel Sci Technol 54(1):77–82

    Article  Google Scholar 

  21. Van der Weij F W (1980) Makromol Chem 181:2541–2548

    Article  Google Scholar 

  22. Cervantes J, Zarraga R, Salazar-Hernández C (2012) Appl Organ Chem 26:157–163

    Article  Google Scholar 

  23. Salazar-Hernández C, Salazar-Hernández M, Carrera-Cerritos R, Elorza E, Mendoza-Miranda JM, Navarro R (2017) J Sol-Gel Sci Techonl 81:405–412

    Article  Google Scholar 

  24. Standard guide for preparation of metallographic specimens. Norm ASTM E3-11

  25. Standard test method for brinell hardness of metallic materials. Norm ASTM E10-15a

  26. Standard test method for pull-off strength of coatings using portable adhesion testers. Norm ASTM D4541-17

  27. Launer PJ (1987) Infrared analysis of organosilicon compounds: spectra structure correlation silicon compounds. In: Arkles B (ed) Gelest Inc:Morrisville, PA

  28. Marsmann HC (1999) 29Si NMR in molecular sciences and chemical engineering from encyclopedia of spectroscopy and apectrometry. 2nd edn., vol 17, pp 2539–2549

  29. Kohl JG, Singer IL (1999) Prog Org Coat 36:15–20

    Article  Google Scholar 

  30. Barroso de Aguiar J, Cruz MD (1998) J Adhes Sci Technol 12:1243–1251

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge the financial support of the CONACyT through grant CB-186327/2012 register as SIP-2013-Re/099; also to LICAM-LAB of the University of Guanajuato for SEM analysis. Finally, the authors appreciate the technical support of Daniela Mocada in SEM analysis and Luis A. Hernández.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carmen Salazar-Hernández or Mercedes Salazar-Hernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar-Hernández, C., Salazar-Hernández, M., Mendoza-Miranda, J.M. et al. Organic modified silica obtained from DBTL polycondensation catalyst for anticorrosive coating. J Sol-Gel Sci Technol 87, 299–309 (2018). https://doi.org/10.1007/s10971-018-4732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4732-9

Keywords

Navigation