Skip to main content
Log in

A simple strategy for the synthesis of Zn-IL-SBA-15 by sol–gel and the application in desulfurization

  • Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

SBA-15 functionalized with both zinc ions and ionic liquids was simply synthesized by sol–gel method. The characterization results of Fourier transform infrared spectroscopy, X-ray diffraction, elemental analysis, scanning electron microscopy, energy dispersive spectrometer, atomic absorption spectroscopy, and Brunauer–Emmett–Teller indicated that Zn2+ and imidazolium ionic liquid had been successfully immobilized on SBA-15, imidazolium as cation and [ZnCl3]- /[Zn2Cl5]- as complex anion. The immobilized Zn2+ and ionic liquid did not destroy the typical two-dimensional hexagonal mesoscopic structure of SBA-15 in this experimental research scope. But with the mass of Zn2+ and IL increasing, the mesoscopic order reduced, the pore diameter, pore volume and specific surface area decreased, whereas the wall thickness increased. The adsorption desulfurization experiments showed that the loaded Zn2+ and imidazolium ionic liquid improved the S-removal efficiency of SBA-15 especially for high aromatic sulfur compound.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Srivastava VC (2012) An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Adv 2:759–783

    Article  Google Scholar 

  2. Shu CH, Sun TH, Zhang HB, Jia JP, Lou ZY (2014) A novel process for gasoline desulfurization based on extraction with ionic liquids and reduction by sodium borohydride. Fuel 121:72–78

    Article  Google Scholar 

  3. Gao HS, Zeng SJ, Liu XM, Nie Y, Zhang XP, Zhang SJ (2015) Extractive desulfurization of fuel using N-butylpyridinium-based ionic liquids. RSC Adv 5:30234–30238

    Article  Google Scholar 

  4. Nie Y, Dong YX, Bai L, Dong HF, Zhang XP (2013) Fast oxidative desulfurization of fuel oil using dialkylpyridinium tetrachloroferrates ionic liquids. Fuel 103:997–1002

    Article  Google Scholar 

  5. Zhang M, Zhu WS, Xun SH, Li HM, Gu QQ, Zhao Z, Wang Q (2013) Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids. Chem Eng J 220:328–336

    Article  Google Scholar 

  6. Zhang HX, Gao JJ, Meng H, Li CX (2012) Removal of thiophenic sulfurs using an extractive oxidative desulfurization process with three new phosphotungstate catalysts. Ind Eng Chem Res 51:6658–6665

    Article  Google Scholar 

  7. Fang DW, Wang Q, Liu Y, Xia LX, Zang SL (2014) High-efficient oxidation–extraction desulfurization process by ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid. Energy Fuels 28:6677–6682

    Article  Google Scholar 

  8. He GS, Sun LB, Song XL, Liu XQ, Yin Y, Wang YC (2011) Adjusting host properties to promote Cu prous chloride dispersion and adsorptive desulfurization sites formation on SBA-15. Energy Fuels 25:3506–3513

    Article  Google Scholar 

  9. Hussain M, Abbas N, Fino D, Russo N (2012) Novel mesoporous silica supported ZnO adsorbents for the desulphurization of biogas at low temperatures. Chem Eng J 188:222–232

    Article  Google Scholar 

  10. Meng XR, Qiu GH, Wang G, Cai QH, Wang YH (2013) Durable and regenerable mesoporous adsorbent for deep desulfurization of model jet fuel. Fuel Processing Technol 111:78–85

    Article  Google Scholar 

  11. Liu BS, Wei XN, Zhan YP, Chang RZ, Subhan F, Au CT (2011) Preparation and desulfurization performance of LaMeOx/SBA-15 for hot coal gas. Appl Catal B 102:27–36

    Article  Google Scholar 

  12. Wang YH, Yang RT, Heinzel JM (2008) Desulfurization of jet fuel by π-complexation adsorption with metal halides supported on MCM-41 and SBA-15 mesoporous materials. Chem Eng Sci 63:356–365

    Article  Google Scholar 

  13. Rodrigues AKO, Ramos JET, Cavalcante CL, Rodriguez-Castellon E, Azevedo DCS (2014) Pd-loaded mesoporous silica as a robust adsorbent in adsorption/desorption desulfurization cycles. Fuel 126:96–103

    Article  Google Scholar 

  14. Francisco M, Arce A, Soto A (2010) Ionic liquids on desulfurization of fuel oils. Fluid Phase Equilibria 294:39–48

    Article  Google Scholar 

  15. Ge JH, Zhou YM, Yang Y, Xue MW (2011) Catalytic oxidative desulfurization of gasoline using ionic liquid emulsion system. Ind Eng Chem Res 50:13686–13692

    Article  Google Scholar 

  16. Lü HY, Ren WZ, Wang HY, Wang Y, Chen W, Suo ZH (2013) Deep desulfurization of diesel by ionic liquid extraction coupled with catalytic oxidation using an Anderson-type catalyst [(C4H9)4N]4NiMo6O24H6. Appl Catal A 453:376–382

    Article  Google Scholar 

  17. Gong YJ, Dou T, Kang SJ, Li Q, Hu YF (2009) Deep desulfurization of gasoline using ion-exchange zeolites:Cu(I)- and Ag(I)-beta. Fuel Process Technol 90:122–129

    Article  Google Scholar 

  18. Nejad NF, Shams E, Amini MK, Bennett JC (2013) Synthesis of magnetic mesoporous carbon and its application for adsorption of dibenzothiophene. Fuel Process Technol 106:376–384

    Article  Google Scholar 

  19. Zhang M, Zhu WS, Li HM, Xun SH, Ding WJ, Liu JJ, Zhao Z, Wang Q (2014) One-pot synthesis, characterization and desulfurization of functional mesoporous W-MCM-41 from POM-based ionic liquids. Chem Eng J 243:386–393

    Article  Google Scholar 

  20. Teymouri M, Samadi-Maybodi A, Vahid A, Miranbeigi A (2013) Adsorptive desulfurization of low sulfur diesel fuel using palladium containing mesoporous silica synthesized via a novel in-situ approach. Fuel Process Technol 116:257–264

    Article  Google Scholar 

  21. Wang YH, Yang RT, Heinzel JM (2009) Desulfurization of jet fuel JP-5 light fraction by MCM-41 and SBA-15 supported cuprous oxide for fuel cell applications. Ind. Eng. Chem. Res 48:142–147

    Article  Google Scholar 

  22. Chen H, Wang YH, Yang FH, Yang RT (2009) Desulfurization of high-sulfur jet fuel by mesoporous π-complexation adsorbents. Chem Eng Sci 64:5240–5246

    Article  Google Scholar 

  23. Domanska U, Wlazlo M (2014) Effect of the cation and anion of the ionic liquid on desulfurization of model fuels. Fuel 134:114–125

    Article  Google Scholar 

  24. Ferreira AR, Freire MG, Ribeiro JC, Lopes FM, Crespo JG, Coutinho JAP (2014) Ionic liquids for thiols desulfurization: Experimental liquid-liquid equilibrium and COSMO-RS description. Fuel 128:314–329

    Article  Google Scholar 

  25. Wang F, Zhang ZQ, Yang J, Wang LP, Lin Y, Wei Y (2013) Immobilization of room temperature ionic liquid (RTIL) on silica gel for adsorption removal of thiophenic sulfur compounds from fuel. Fuel 107:394–399

    Article  Google Scholar 

  26. Lin Y, Wang F, Zhang ZQ, Yang J, Wei Y (2014) Polymer-supported ionic liquids: Synthesis, characterization and application in fuel desulfurization. Fuel 116:273–280

    Article  Google Scholar 

  27. Li N, Wang F, Zhang ZQ, Nie HH, Ren CC, Cui M (2014) Synthesis and desulfurization performance of functional silica gel modified by polymeric 1-vinyl-3-ethylimidazolium tetrafluoroborate ionic liquids. Ind Eng Chem Res 53:16664–16671

    Article  Google Scholar 

  28. Hesemann P, Viau L, Vioux A (2015) Silica ionogels and ionosilicas. In: Levy D, Zayat M (eds) The Sol-Gel Handbook-Synthesis, characterization, and applications. Wiley, Weinheim, Germany

    Google Scholar 

  29. Thach UD, Trens P, Prelot B, Zajac J, Hesemann P (2016) Tuning the interfacial properties of mesoporous ionosilicas: effect of cationic precursor and counter anion. J Phys Chem C 120(48):27412–27421

    Article  Google Scholar 

  30. Thach UD, Hesemann P, Yang G (2016) Ionosilicas as efficient sorbents for anionic contaminants: Radiolytic stability and ion capacity. J Colloid Interface Sci 482:233–239

    Article  Google Scholar 

  31. Petrova M, Guigue M, Venault L, Moisy P, Hesemann P (2015) Anion selectivity in ion exchange reactions with surface functionalized ionosilicas. Phys Chem Chem Phys 17:10182–10188

    Article  Google Scholar 

  32. El Hankari S, Bouhaouss A, Hesemann P (2013) Anionic surfactants as versatile soft-templates to access nanostructured ionosilicas from functional amine and ammonium precursors. Microporous Mesoporous Mater 180:196–208

    Article  Google Scholar 

  33. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  Google Scholar 

  34. Zhang L, Cui YD, Zhang CP, Wang L, Wan H, Guan GF (2012) Biodiesel production by esterification of oleic acid over brønsted acidic ionic liquid supported onto Fe-incorporated SBA-15. Ind Eng Chem Res 51:16590–16596

    Article  Google Scholar 

  35. Han YF, Chen FX, Zhong ZY, Ramesh K, Chen LW, Widjaja E (2006) Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15. J Phys Chem B 110:24450–24456

    Article  Google Scholar 

  36. Peng CY, Zhang HJ, Yu JB, Meng QG, Fu LS, Li HR (2005) Synthesis, characterization, and luminescence properties of the ternary europium complex covalently bonded to mesoporous SBA-15. J Phys Chem B 109:15278–15287

    Article  Google Scholar 

  37. Lim MH, Stein A (1999) Comparative studies of grafting and direct syntheses of inorganic organic hybrid mesoporous materials. Chem Mater 11:3285–3295

    Article  Google Scholar 

  38. Ren WL, Chen SY, Zhang YC, Li GM (2011) Preparation of Zn/SBA-15 and its desulfurization property on H2S. Chem Ind Eng Process 30:2034–2039

    Google Scholar 

  39. Zou Y, Xu HJ, Wu GZ, Jiang Z, Chen SM, Huang YY (2009) Structural analysis of [ChCl]m[ZnCl2]n ionic liquid by X-ray absorption fine structure spectroscopy. J Phys Chem B 113:2066–2070

    Article  Google Scholar 

  40. Hansmeir AR, Meindersma GW, de Haan AB (2011) Desulfurization and denitrogenation of gasoline and diesel fuels by means of ionic liquids. Green Chem 13:1907–1913

    Article  Google Scholar 

  41. Hernández-Maldonado AJ, Yang FH, Qi G, Yang RT (2005) Desulfurization of transportation fuels by p-complexation sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolites. Appl Catal B 56:111–126

    Article  Google Scholar 

  42. Ko NH, Lee JS, Huh ES, Lee H, Jung KD, Kim HS, Cheong M (2008) Extractive desulfurization using Fe-containing ionic liquids. Energy Fuel 22:1687–1690

    Article  Google Scholar 

  43. Gano ZS, Mjalli FS, Al-Wahaibi T, Al-Wahaibi Y, AlNashef IM (2014) Solubility of thiophene and dibenzothiophene in anhydrous FeCl3-and ZnCl2-based deep eutectic solvents. Ind Eng Chem Res 53:6815–6823

    Article  Google Scholar 

  44. Chen X, Guo H, Abdeltawab AA, Guan Y, Al-Deyab SS, Yu G, Yu L (2015) Brønsted-Lewis acidic ionic liquids and application in oxidative desulfurization of diesel fuel. Energy Fuels 29(5):2998–3003

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, No. 51103179) and the Qingdao science and technology plan projects (14-2-4-7-jch) and the Fundamental Research Funds for the Central Universities (15CX05027 A, 16CX05013 A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, F., Nie, H. et al. A simple strategy for the synthesis of Zn-IL-SBA-15 by sol–gel and the application in desulfurization. J Sol-Gel Sci Technol 82, 827–833 (2017). https://doi.org/10.1007/s10971-017-4351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4351-x

Keywords

Navigation