Skip to main content
Log in

Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer

  • Original Paper: Devices based on sol-gel or hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Cr-doped TiO2 nanoparticles were synthesized by chemical sol–gel method. The anatase phase of TiO2 nanoparticles was proved by X-ray diffraction analysis. Furthermore, the field emission scanning electron microscopy revealed that the size of the nanoparticles was about 30 nm. TiO2 nanoparticles with 0.5 % Cr dopant concentration were selected to fabricate dye-sensitized solar cells due to their smaller band gap. Furthermore, Cr-doped TiO2 thin films (0.5 %) with different thicknesses were employed as blocking layer on the surface of fluorine-doped tin oxide (FTO) substrate. The current density–voltage measurement showed that the photovoltaic parameters of the fabricated dye-sensitized solar cells were improved after introducing Cr-doped TiO2 blocking layer at the interface of FTO and Cr-doped TiO2 mesoporous layer. The maximum power conversion efficiency increased more than 110 % as a result of inserting the Cr-doped blocking layer. The electrochemical impedance spectroscopy indicated that a more efficient charge transfer process takes place at the interface of the FTO/TiO2 due to the enhanced interfacial properties and reduction of charge recombination.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meng L, Li C (2011) Blocking layer effect on dye-sensitized solar cells assembled with TiO2 nanorods prepared by dc reactive magnetron sputtering. Nanosci Nanotechnol Lett 3:181–185

    Article  Google Scholar 

  2. Giribabu L (2015) Green materials for tapping solar energy. Int J Lumin Appl 5:175–177

    Google Scholar 

  3. Moradzaman M, Mohammadi MR (2015) Development of an aqueous TiO2 paste in terms of morphological manipulation of nanostructured photoanode electrode of dyesensitized solar cells. J Sol-Gel Sci Technol 75:447–459

    Article  Google Scholar 

  4. Hocevar M, Berginc M, Topic M, Krasovec UO (2010) Sponge-like TiO2 layers for dye-sensitized solar cells. J Sol-Gel Sci Technol 53:647–654

    Article  Google Scholar 

  5. Jung WH, Kwak NS, Hwang TS, Yi KB (2012) Preparation of highly porous TiO2 nanofibers for dye-sensitized solar cells (DSSCs) by electro-spinning. Appl Sur Sci 261:343–352

    Article  Google Scholar 

  6. Yong SM, Tsvetkov N, Larina L, Ahn BT, Kim DK (2014) Ultrathin SnO2 layer for efficient carrier collection in dye-sensitized solar cells. Thin Solid Films 556:503–508

    Article  Google Scholar 

  7. Cho TY, Yoon SG, Sekhon SS, Kang MG, Han CH (2011) The effect of a sol-gel formed TiO2 blocking layer on the efficiency of dye-sensitized solar cells. Bull Korean Chem Soc 32:3629–3633

    Article  Google Scholar 

  8. Kim JH, Lee KJ, Roh JH, Song SW, Park JH, Yer IH, Moon BM (2012) Ga-doped ZnO transparent electrodes with TiO2 blocking layer/nanoparticles for dye-sensitized solar cells. Nanoscale Res Lett 11:11–14

    Article  Google Scholar 

  9. Mehmood U, Hussein IA, Harrabi K, Mekki MB, Ahmed S, Tabet N (2015) Hybrid TiO2-multiwall carbon nanotube (MWCNTs) photoanodes for efficient dye sensitized solar cells (DSSCs). Sol Energ Mat Sol Cells 140:174–179

    Article  Google Scholar 

  10. Baxter JB, Aydil ES (2006) Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol Energ Mat Sol Celss 90:607–622

    Article  Google Scholar 

  11. Lee JH, Park NG, Shin YJ (2011) Nano-grain SnO2 electrodes for high conversion efficiency SnO2-DSSC. Sol Energ Mat Sol Cells 95:179–183

    Article  Google Scholar 

  12. Rashad MM, Shalan AE (2014) Hydrothermal synthesis of hierarchical WO3 nanostructures for dye-sensitized solar cells. Appl Phys A 116:781–788

    Article  Google Scholar 

  13. Liu Q, Wei L, Yuan S, Ren X, Zhao Y, Wang Z, Zhang M, Shi L, Li D (2015) The effect of Ni(CH3COO)2 post-treatment on the charge dynamics in p-type NiO dye-sensitized solar cells. J Mater Sci 50:6668–6676

    Article  Google Scholar 

  14. Powar S, Xiong D, Daeneke T, Ma MT, Gupta A, Lee G, Makuta S, Tachibana Y, Chen W, Spiccia L, Cheng YB, Götz G, Bäuerle P, Bach U (2014) Improved photovoltages for p-type dye-sensitized solar cells using CuCrO2 nanoparticles. J Phys Chem C 118:16375–16379

    Article  Google Scholar 

  15. Yan J, Zhou F (2011) TiO2 nanotubes: structure optimization for solar cells. J Mater Chem 21:9406–9418

    Article  Google Scholar 

  16. Liu QP (2014) Photovoltaic performance improvement of dye-sensitized solar cells based on Mg-doped TiO2 thin films. Electrochim Acta 129:459–462

    Article  Google Scholar 

  17. Hong Y, Liao JY, Cao D, Zang X, Kuang DB, Wang L, Meier H, Su CY (2011) Organic dye bearing asymmetric double donor-π-acceptor chains for dye-sensitized solar cells. J Org Chem 76:8015–8021

    Article  Google Scholar 

  18. Zhi J, Chen A, Cui H, Xie Y, Huang F (2015) NiO-decorated mesoporous TiO2 flowers for an improved photovoltaic dye sensitized solar cell. Phys Chem Chem Phys 17:5103–5108

    Article  Google Scholar 

  19. Zheng H, Neo CY, Mei X, Qiu J, Ouyang J (2012) Reduced graphene oxide films fabricated by gel coating and their application as platinum-free counter electrodes of highly efficient iodide/triiodide dye-sensitized solar cells. J Mater Chem 22:14465–14474

    Article  Google Scholar 

  20. Bartelt AF, Schutz R, Strothkamper C, Kastl I, Janzen S, Friedrich D, Fuhrmann WCG, Danner D, Scheller LP, Nelles G, Eichberger R (2014) Solvent-induced surface state passivation reduces recombination in semisquarylium dye-sensitized solar cells. Appl Phys Let 104:223902–223908

    Article  Google Scholar 

  21. Nakade S, Kanzaki T, Kubo W, Kitamura T, Wada Y, Yanagida S (2005) Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell: the case of solar cells using the I-/I3- redox couple. J Phys Chem B 109:3480–3487

    Article  Google Scholar 

  22. Duong TT, Choi HJ, He QJ, Le AT, Yoon SG (2013) Enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by nanocluster deposition. J Alloys Compd 561:206–210

    Article  Google Scholar 

  23. Patrocínio AOT, Paterno LG, Iha NYM (2009) Layer-by-layer TiO2 films as efficient blocking layers in dye-sensitized solar cells. J Photochem Photobiol A: Chem 205:23–27

    Article  Google Scholar 

  24. Lee SH, Chae SY, Hwang YJ, Koo KK, Joo OS (2013) Influence of TiO2 nanotube morphology and TiCl4 treatment on the charge transfer in dye-sensitized solar cells. Appl Phys A 112:733–737

    Article  Google Scholar 

  25. Lin YH, Wu YC, Lai BY (2012) Collection efficiency enhancement of injected electrons in dye-sensitized solar cells with a Ti interfacial layer and TiCl4 treatment. Int J Electrochem Sci 7:9478–9487

    Google Scholar 

  26. Li SJ, Lin Y, Tan WW, Zhang JB, Zhou XW, Chen JM, Chen Z (2010) Preparation and performance of dye-sensitized solar cells based on ZnO-modified TiO2 electrodes. Int J Miner Metall Mater 17:92–97

    Article  Google Scholar 

  27. Gubbala S, Chakrapani V, Kumar V, Sunkara MK (2008) Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires. Adv Funct Mater 18:2411–2418

    Article  Google Scholar 

  28. Liu Y, Sun X, Tai Q, Hu H, Chen B, Huang N, Sebo B, Zhao XZ (2011) Efficiency enhancement in dye-sensitized solar cells by interfacial modification of conducting glass/mesoporous TiO2 using a novel ZnO compact blocking film. J Power Source 196:475–481

    Article  Google Scholar 

  29. Jeong JA, Kim HK (2011) Thickness effect of RF sputtered TiO2 passivating layer on the performance of dye-sensitized solar cells. Sol Energ Mat Sol Cells 95:344–348

    Article  Google Scholar 

  30. Lin C, Tsai F, Lee MH, Lee CH, Tien TC, Wang LP, Tsai SY (2009) Enhanced performance of dye-sensitized solar cells by an Al2O3 charge-recombination barrier formed by low-temperature atomic layer deposition. J Mater Chem 19:2999–3003

    Article  Google Scholar 

  31. Manseki K, Ikeya T, Tamura A, Ban T, Sugiuraa T, Yoshida T (2014) Mg-doped TiO2 nanorods improving open-circuit voltages of ammonium lead halide perovskite solar cells. RSC Adv 4:9652–9655

    Article  Google Scholar 

  32. Lu Z, Mou X, Wu J, Zhang D, Zhang L, Huang F, Xu F, Huang S (2010) Improved-performance dye-sensitized solar cells using Nb-doped TiO2 electrodes: efficient electron injection and transfer. Adv Funct Mater 20:509–515

    Article  Google Scholar 

  33. Nikolay T, Larina L, Shevaleevskiy O, Ahn BT (2011) Electronic structure study of lightly Nb-doped TiO2 electrode for dye-sensitized solar cells. J Energy Environ Sci 4:1480–1486

    Article  Google Scholar 

  34. Ako RT, Ekanayake P, Young DJ, Hobley J, Chellappan V, Tan AL, Gorelik S, Subramanian GS, Lim CM (2015) Evaluation of surface energy state distribution and bulk defect concentration in DSSC photoanodes based on Sn, Fe, and Cu doped TiO2. Appl Sur Sci 351:950–961

    Article  Google Scholar 

  35. Jin EM, Jeong SM, Kang HC, Gu HB (2016) Photovoltaic effect of metal-doped TiO2 nanoparticles for dye-sensitized solar cells. ECS J Solid State Sci Technol 5:109–114

    Article  Google Scholar 

  36. Wang C, Shi H, Li Y (2012) Synthesis and characterization of natural zeolite supported Cr-doped TiO2 photocatalysts. Appl Sur Sci 258:4328–4333

    Article  Google Scholar 

  37. Peng YH, Huang GF, Huang WQ (2012) Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Adv Powder Technol 23:8–12

    Article  Google Scholar 

  38. Xu H, Zeng M, Li J, Li F (2016) Cr-doped TiO2 core–shell nanospheres with enhanced photocatalytic activity and lithium storage capacity. Nano 11:1650006

    Article  Google Scholar 

  39. Deshpande SB, Potdar HS, Khollam YB, Patil KR, Pasrich R, Jacob NE (2006) Room temperature synthesis of mesoporous aggregates of anatase TiO2 nanoparticles. Mater Chem Phys 97:207–212

    Article  Google Scholar 

  40. Asemi M, Ghanaatshoar M (2016) Controllable growth of vertically aligned Bi-doped TiO2 nanorod arrays for all-oxide solid-state DSSCs. Appl Phys A 122:853

    Article  Google Scholar 

  41. Asemi M, Ghanaatshoar M (2014) Preparation of CuCrO2 nanoparticles with narrow size distribution by sol-gel method. J Sol-Gel Sci Technol 70:416–421

    Article  Google Scholar 

  42. Asemi M, Ghanaatshoar M (2016) Conductivity improvement of CuCrO2 nanoparticles by Zn doping and their application in solid-state dye-sensitized solar cells. Ceram Int 42:6664–6672

    Article  Google Scholar 

  43. Tian B, Li C, Zhang J (2012) One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases. Chem Eng Commun 191:402–409

    Google Scholar 

  44. Tse JS, Klug DD, Gao F (2006) Hardness of nanocrystalline diamonds. Phys Rev B 73:140102

    Article  Google Scholar 

  45. Chowdhury AKMS, Monclus M, Cameron DC, Gilvarry J, Murphy MJ, Barradas NP, Hashmi MSJ (1997) The composition and bonding structure of CNx films and their influence on the mechanical properties. Thin Solid Films 308:130–134

    Article  Google Scholar 

  46. Yu H, Zhang S, Zhao H, Will G, Liu P (2009) An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells. Electrochim Acta 54:1319–1324

    Article  Google Scholar 

  47. Choi H, Nahm G, Kim J, Moon J, Nam S, Jung DR, Park B (2012) The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell. Curr Appl Phys 12:737–741

    Article  Google Scholar 

  48. Motlak M, Barakat NAM, Akhtar MS, Hamza AM, Yousef A, Fouad H, Yang OB (2015) Influence of GO incorporation in TiO2 nanofibers on the electrode efficiency in dye-sensitized solar cells. Ceram Int 41:1205–1212

    Article  Google Scholar 

  49. Asemi M, Ghanaatshoar M (2016) The influence of magnesium oxide interfacial layer on photovoltaic properties of dye-sensitized solar cells. Appl Phys A 122:842

    Article  Google Scholar 

  50. Li W, Yang J, Zhang J, Gao S, Luo Y, Liu M (2014) Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping. Mater Res Bull 57:177–183

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghanaatshoar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asemi, M., Maleki, S. & Ghanaatshoar, M. Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer. J Sol-Gel Sci Technol 81, 645–651 (2017). https://doi.org/10.1007/s10971-016-4257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4257-z

Keywords

Navigation