Skip to main content
Log in

Precursor chain length dependence of polymeric precursor method for the preparation of magnetic Fenton-like CuFe2O4-based catalysts

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Heterogeneous Fenton-like catalysts based on CuFe2O4 were prepared by polymeric precursor method, using various polyhydroxy alcohols as polymeric agents: ethylene glycol, diethylene glycol and triethylene glycol. These catalysts were, respectively, characterized by XRD, SEM, pHPZC and VSM measurements. All catalysts showed typical ferromagnetic properties and highly catalytic activities for the degradation of methylene blue. When the chain length of polyhydroxy alcohols increased, the pHPZC value and particle size of these catalysts were not significantly modified, whereas the percentage of CuFe2O4 tetragonal spinel phase decreased, leading to the decline of catalytic activity and the reduction in coercive field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singh S, Yadav BC, Gupta VD, Dwivedi PK (2012) Investigations on effects of surface morphologies on response of LPG sensor based on nanostructured copper ferrite system. Mater Res Bull 47:3538–3547

    Article  Google Scholar 

  2. Jin YH, Seo SD, Shim HW, Park KS, Kim DW (2012) Synthesis of core/shell spinel ferrite/carbon nanoparticles with enhanced cycling stability for lithium ion battery anodes. Nanotechnology 23:125402 (6 pages)

    Article  Google Scholar 

  3. Ding YB, Zhu LH, Wang N, Tang HQ (2013) Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Appl Catal B 129:153–162

    Article  Google Scholar 

  4. Mendonça MH, Godinho MI, Catarino MA, da Silva Pereira MI, Costa FM (2002) Preparation and characterisation of spinel oxide ferrites suitable for oxygen evolution anodes. Solid State Sci 4:175–182

    Article  Google Scholar 

  5. Yan K, Wu X, An X, Xie X (2013) Facile synthesis and catalytic property of spinel ferrites by a template method. J Alloys Compd 552:405–408

    Article  Google Scholar 

  6. Wang Y, Zhao H, Li M, Fan J, Zhao G (2014) Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Appl Catal B 147:534–545

    Article  Google Scholar 

  7. Xiao Z, Jin S, Wang X, Li W, Wang J, Liang C (2012) Preparation, structure and catalytic properties of magnetically separable Cu–Fe catalysts for glycerol hydrogenolysis. J Mater Chem 22:16598–16605

    Article  Google Scholar 

  8. Wu R, Qu K, He H, Yu Y (2004) Removal of azo-dye acid red B (ARB) by adsorption and catalytic combustion using magnetic CuFe2O4 powder. Appl Catal B 48:49–56

    Article  Google Scholar 

  9. Pereira C, Pereira AM, Fernandes C, Rocha M, Mendes R, Fernandez García MP, Guedes A, Tavares PB, Greneche JM, Araujo JP, Freire C (2012) Superparamagnetic MFe2O4 (M = Fe Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24:1496–1504

    Article  Google Scholar 

  10. Feng J, Su L, Ma Y, Ren C, Guo Q, Chen X (2013) CuFe2O4 magnetic nanoparticles: a simple and efficient catalyst for the reduction of nitrophenol. Chem Eng J 221:16–24

    Article  Google Scholar 

  11. Amini E, Rezaei M, Sadeghinia M (2013) Low temperature CO oxidation over mesoporous CuFe2O4 nanopowders synthesized by a novel sol-gel method. Chin J Catal 34:1762–1767

    Article  Google Scholar 

  12. Stefanescu O, Vlase G, Barbu M, Barvinschi P, Stefanescu M (2013) Preparation of CuFe2O4/SiO2 nanocomposite starting from Cu(II)–Fe(III) carboxylates embedded in hybrid silica gels. J Therm Anal Calorim 113:1245–1253

    Article  Google Scholar 

  13. Yang H, Yan J, Lu Z, Cheng X, Tang Y (2009) Photocatalytic activity evolution of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation. J Alloys Compd 476:715–719

    Article  Google Scholar 

  14. Tasca JE, Quincoces CE, Lavat A, Alvarez AM, González MG (2011) Preparation and characterization of CuFe2O4 bulk catalysts. Ceram Int 37:803–812

    Article  Google Scholar 

  15. AraĂșjo VD, Bernadi MIB (2011) Synthesis and optical and structural characterization of Ce(1−x)O2:MxO (M = Cu, Co) pigments. J Therm Anal Calorim 103:501–506

    Article  Google Scholar 

  16. Kakihana M (1996) “Sol-gel” preparation of high temperature superconducting oxides. J Sol-Gel Sci Technol 6:7–55

    Article  Google Scholar 

  17. Rodriguez-Carvajal J (2001) Commission of powder diffraction. IUCr. Newsletter 26:12–19

    Google Scholar 

  18. Smiciklas ID, Milonjic SK, Pfendt P, Raicevic S (2000) The point of zero charge and sorption of cadmium (II) and strontium (II) ions on synthetic hydroxyapatite. Sep Purif Technol 18:185–194

    Article  Google Scholar 

  19. Cassia-Santos MR, Souza AG, Soledade LEB, Varela JA, Longo E (2005) Thermal and structural investigation of (Sn1−xTix)O2 obtained by the polymeric precursor method. J Therm Anal Calorim 79:415

    Article  Google Scholar 

  20. Pham ALT, Doyle FM, Sedlak DL (2012) Inhibitory effect of dissolved silica on H2O2 decomposition by iron(III) and manganese(IV) oxides: implication for H2O2 based in situ chemical oxidation. Environ Sci Technol 46:1055–1062

    Article  Google Scholar 

  21. Lousada CM, Johansson AJ, Brinck T, Jonsson M (2013) Reactivity of metal oxide clusters with hydrogen peroxide and water—a DFT study evaluating the performance of different exchange–correlation functionals. Phys Chem Chem Phys 15:5539–5552

    Article  Google Scholar 

  22. Walvekar SP, Halgeri AP, Anorg Z (1973) The decomposition of H2O2 in presence of mixed oxide catalysts. Allg Chem 400:83–88

    Article  Google Scholar 

  23. Goya GF, Rechenberg HR (1998) Superparamagnetic transition and local disorder in CuFe2O4 nanoparticles. Nanostruct Mater 10:1001–1011

    Article  Google Scholar 

  24. Qi H, Ye J, Tao N, Wen M, Chen Q (2009) Synthesis of octahedral magnetite microcrystals with high crystallinity and low coercive field. J Cryst Growth 311:394–398

    Article  Google Scholar 

  25. Silva AC, Oliveira DQL, Oliveira LCA, Anastácio AS, Ramalho TC, Lopes JH, Carvalho HWP, Torres CER (2009) Nb-containing hematites Fe2−xNbxO3: the role of Nb5+ on the reactivity in presence of the H2O2 or ultraviolet light. Appl Catal A 357:79–84

    Article  Google Scholar 

  26. Hoppe R, Schulz-Ekloff G, Wöhrle D, Shpiro ES, Tkachenko OP (1993) X.p.s. investigation of methylene blue incorporated into faujasites and AIPO family molecular sieves. Zeolites 13:222–228

    Article  Google Scholar 

  27. Carlson RW, Anderson MS, Johnson RE, Smythe WD, Hendrix AR, Barth CA, Soderblom LA, Hansen GB, McCord TB, Dalton JB, Clark RN, Shirley JH, Ocampo AC, Matson DL (1999) Hydrogen peroxide on the surface of Europa. Science 283:2062–2064

    Article  Google Scholar 

  28. Zhang Y, Wei T, Xu K, Ren Z, Xiao L, Song J, Zhao F (2015) Catalytic decomposition action of hollow CuFe2O4 nanospheres on RDX and FOX-7. RSC Adv 5:75630–75635

    Article  Google Scholar 

  29. Ding M, Tu J, Tsubaki N, Chen L, Wang T, Ma L, Wang C (2015) Design of bimodal pore Cu-Fe based catalyst with enhanced performances for higher alcohols synthesis. Energy Proc 75:767–772

    Article  Google Scholar 

  30. Petigara BR, Blough NV, Mignerey AC (2002) Mechanisms of hydrogen peroxide decomposition in soils. Environ Sci Technol 36:639–645

    Article  Google Scholar 

  31. Millero FJ, Johnson RL, Vega CA, Sharma VK, Sotolongo S (1992) Effect of ionic interactions on the rates of reduction of Cu(II) with H2O2 in aqueous solutions. J Solut Chem 21:1271–1287

    Article  Google Scholar 

  32. SirĂ©s I, Garrido JA, RodrĂ­guez RM, Cabot PLL, Centellas F, Arias C, Brillas E (2006) Electrochemical degradation of paracetamol from water by catalytic action of Fe2+, Cu2+, and UVA light on electrogenerated hydrogen peroxide. J Electrochem Soc 153:D1–D9

    Article  Google Scholar 

  33. Sheldon RA, Wallau M, Arends IWCE, Schuchardt U (1998) Heterogeneous catalysts for liquid-phase oxidations: Philosophers’ stones or Trojan horses. Acc Chem Res 31:485–493

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under Grant number C2015-18-08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien Khoa Le.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, H.T., Le, T.K. Precursor chain length dependence of polymeric precursor method for the preparation of magnetic Fenton-like CuFe2O4-based catalysts. J Sol-Gel Sci Technol 80, 160–167 (2016). https://doi.org/10.1007/s10971-016-4070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4070-8

Keywords

Navigation