Skip to main content
Log in

Photocatalytic degradation of indigo carmine using Nd-doped TiO2-decorated graphene oxide nanocomposites

  • Original Paper: Industrial and technological applications of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of neodymium-doped titanium dioxide (Nd–TiO2) decorated on graphene oxide (GO) were synthesized by sol–gel method. The structures, morphologies and optical properties of the nanocomposites (Nd–TiO2–GO) were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and ultraviolet–visible spectroscopy. The photocatalytic study of Nd–TiO2–GO nanocomposites was evaluated via the degradation of indigo carmine under simulated solar light. Results demonstrated that the photodegradation efficiency of indigo carmine solutions irradiated by solar simulated light for 3 h with the nanocomposites used as a catalyst reached a level of 92 % (0.6 % Nd). This high photocatalytic degradation of indigo carmine solutions by the Nd–TiO2–GO nanocomposites is ascribed to the spherical nanocrystalline size of TiO2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Fig. 11

Similar content being viewed by others

References

  1. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and application. Catal 3:189–218

    Article  Google Scholar 

  2. Agorku ES, Mittal H, Mamba BB, Pandey AC, Mishra AK (2014) Fabrication of photocatalyst based on Eu3+-doped ZnS: SiO2 and sodium alginate core shell nanocomposite. Int J Biol Macromol 70:143–149

    Article  Google Scholar 

  3. Kennedy MT, Morgan JM, Benefield KK, McFadden AF (1992) In: Proceedings of the 47th Ind. waste conference, West Lafayette. Lewis Pub, Chelssea, MF, pp 727–741

  4. Park YK, Lee CH (1996) Dyeing wastewater treatment by activated sludge process with a polyurethane fluidised bed biofilm. Water Sci Technol 34:193–200

    Article  Google Scholar 

  5. Shaw CB, Carliell CM, Wheatley AD (2002) Anaerobic/aerobic treatment of coloured textile effluents using sequencing batch reactor. Water Resour 36:1993–2001

    Google Scholar 

  6. Vilar VJP, Botelho CMS, Boaventura RAR (2007) Methylene blue adsorption by biomass based materials: biosorbents characterization and process behaviour. J Hazard Mater 147:120–132

    Article  Google Scholar 

  7. Fakhru’I-Razi A, Pendashteh A, Abdullah LC, Brak DRA, Madaeni SS, Abidin ZZ (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170:530–551

    Article  Google Scholar 

  8. Anjaneyulu Y, Chary NS, Raj DSSD (2005) Decolorisation of industrial effluents-available methods and emerging technologies-a review. Rev Environ Sci Biotechnol 4:245–273

    Article  Google Scholar 

  9. Agorku ES, Mamo MA, Mamba BB, Pandey AC, Mishra AK (2015) Cobalt-doped ZnS-reduced graphene oxide nanocomposite as an advanced photo catalytic material. J Porous Mater 22:47–56

    Article  Google Scholar 

  10. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21

    Article  Google Scholar 

  11. Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300

    Article  Google Scholar 

  12. Hoffmann MR, Martins ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  13. Linsebigler A, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanism, and selected results. Chem Rev 95:735–758

    Article  Google Scholar 

  14. Lee HJ, Leventis HC, Moon SJ, Chen P, Ito S, Haque SA, Torres T, Nuesch F, Geiger T, Zakeeruddin SM, Gratzel M, Nazeeruddin MK (2009) PbS and CdS quantum dot-sensitized solid-state solar cells: old concepts, new results. Adv Funct Meter 19:2735–2742

    Article  Google Scholar 

  15. Yoo DH, Cuong TV, Pham VH, Chung JS, Khoa NT, Kim EJ, Hahn SH (2011) Enhanced photocatalytic activity of graphene oxide decorated on TiO2 films under UV and visible irradiation. Current Appl Phys 11:805–808

    Article  Google Scholar 

  16. Han C, Pelaez M, Likodimos V, Kontos AG, Falaras P, O’Shea K, Dionysiou DD (2011) Innovative visible light-activated sulphur doped TiO2 Film for water treatment. Appl Catal B Environ 107:77–87

    Article  Google Scholar 

  17. Chen QF, Shi WM, Xu Y, Wu D, Sun YH (2011) Visible-light-responsive Ag–Si codoped anatase TiO2 photocatalyst with enhanced thermal stability. Mater Chem Phys 125:825–832

    Article  Google Scholar 

  18. Menender-Flores VM, Bahnemann DW, Ohno T (2011) Visible light photocatalytic activities of S-doped TiO2-Fe3+ in aqueous and gas phase. Appl Catal B Environ 103:99–108

    Article  Google Scholar 

  19. Ma YF, Zhang JL, Tian BZ, Chen F, Wang LZ (2010) Synthesis and characterisation of thermally stable Sm, N co-doped TiO2 with highly visible light activity. J Hazard Mater 182:386–393

    Article  Google Scholar 

  20. Li FB, Li XZ, Hou MF (2004) Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+–TiO2 suspension for odour control. Appl Catal B 48:185–194

    Article  Google Scholar 

  21. Zalas M, Laniecki M (2005) Photocatalytic hydrogen generation over lanthanides-doped titania. Sol Energy Mater Sol Cells 89:287–296

    Article  Google Scholar 

  22. Wang Y, Cheng H, Zhang L, Hao Y, Ma J, Xu B (2000) The preparation, characterisation, photoelectrochemical and photocatalytic properties of lanthanides metal-ion-doped TiO2 nanoparticles. J Mol Catal A: Chem 151:205–216

    Article  Google Scholar 

  23. Xie Y, Yuan C (2003) Visible responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation. Appl Catal 46:251–259

    Article  Google Scholar 

  24. Agorku ES, Mamba BB, Pandey AC, Mishra AK (2014) Sulfur/Gadolinium-Codoped TiO2 nanoparticles for enhanced visible-light photocatalytic performance. J Nanometer 2014:1–11

    Article  Google Scholar 

  25. Bakardjieva SS, Murafa N (2009) Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater Chem Phys 114:217–226

    Article  Google Scholar 

  26. Liang YY, Wang HL, Casalongue HNSC, Chen Z, Dai HJ (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3:701–705

    Article  Google Scholar 

  27. Akhavan O, Abdolahad M, Esfandiar A, Mohatshamifar M (2010) Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J Phys Chem C 114:12955–12959

    Article  Google Scholar 

  28. Sampaio MJ, Silva CG, Marques RRN, Silva AMT, Faria JL (2011) Carbon nanotube-TiO2 thin films for photocatalytic applications. Catal Today 161:91–96

    Article  Google Scholar 

  29. Yu J, Ma T, Liu S (2011) Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys Chem Chem Phys 13:3491–3501

    Article  Google Scholar 

  30. Wang W, Yu J, Xiang Q, Cheng B (2012) Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2–graphene composite for photodegradation of acetone in air. Appl Catal B Environ 119:109–116

    Article  Google Scholar 

  31. Zhang H, Lv X, Li Y, Wang Y, Li J (2010) Self assembling TiO2 nanorod on large graphene oxide sheets at a two phase interface and their anti-recombination in photocatalytic applications. ACS Nano 4:380–386

    Article  Google Scholar 

  32. Kim IY, Lee JM, Kim TW, Kim HN, Kim HI, Choi W, Hwang SJ (2012) A strong electronic coupling between graphene nanosheets and layered titanate nanoplates: a soft-chemical route to highly porous nanocomposite with improved photocatalytic activity. Small 8:1038–1048

    Article  Google Scholar 

  33. Lee JS, You KH, Park CB (2012) Aqueous production of TiO2–graphene nanocomposite by a combination of electrostatic attraction and hydrothermal process. Adv Mater 24:1084–1088

    Article  Google Scholar 

  34. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater 21:2233–2239

    Article  Google Scholar 

  35. Cheng P, Qiu J, Gu M, Jin Y, Shangguan W (2004) Synthesis of shape-controlled titania particles from a precursor solution containing urea. Mater Lett 58:3751–3755

    Article  Google Scholar 

  36. Boccuzzi F, Chirino A, Tsubota AS, Hanita M (1999) FTIR study of carbon monoxide oxidation and scrambling at room temperature over gold supported on ZnO and TiO2. J Phy Chem 100:3625–3631

    Article  Google Scholar 

  37. Ding YH, Zhang P, Zhuo Q, Ren HM, Yang ZM, Jiang Y (2011) A green approach to the synthesis of reduced graphene oxide nanosheet under UV irradiation. Nanotech 22:215601–215621

    Article  Google Scholar 

  38. Wang JA, Limas-Ballesteros R, Lopez T, Moreno A, Gomex R, Novaro O, Bokhimi X (2001) Quantitative determination of titanium lattice defects and solid-state reaction mechanism in iron-doped TiO2 photocatalysts. J Phys Chem B 105:9692–9698

    Article  Google Scholar 

  39. Ramesha GK, Sampath S (2009) Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J Phys Chem C 113:7985–7989

    Article  Google Scholar 

  40. Yoo E, Okata T, Kohyama M, Nakamura J, Honma I (2009) Enhanced electrocatalytic activity of Pt subnanocluster on graphene nanosheet surface. Nano Lett 9:2255–2259

    Article  Google Scholar 

  41. Zho Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Hydrotherrmal degradation for the green reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956

    Article  Google Scholar 

  42. Antic Z, Krsmanovic RM, Nikolic MG, Cincovic MM, Mitric M, Polizzi S, Dramicanin MD (2012) Multisite luminescence of rare earth doped TiO2 anatase nanoparticles. Mater Chem Phys 135:1064–1069

    Article  Google Scholar 

  43. Ba-Abbad M, Kadhum AH, Mohammed A, Takriff MS, Sopian K (2012) Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int J Electrochem Sci 7:4871–4888

    Google Scholar 

  44. Thamaphat K, Limsuwan P, Ngotawornchai B (2008) Phase characterisation of TiO2 powder by XRD and TEM. Nat Sci 43:357–361

    Google Scholar 

  45. Choy JH, Lee HC, Jung H, Hwang SJ (2001) A novel synthetic route to TiO2-pillared layered titanate with enhanced photocatalytic activity electronic supplementary information (ESI) available: XRD patterns and crystallographic data for pristine layered caesium titanate and its proton exchanged form, and XRD pattern of the anatase TiO2 nano-sol used as pillaring agent. J Mater Chem 11:2232–2234

    Article  Google Scholar 

  46. Kumaran SM, Gopalkrishnam R (2012) Structural, optical and photoluminescence of Zn1−x Cex O (x = 0, 0.05 and 0.1) nanoparticles by sol-gel method annealed under Ar atmosphere. J Sol Gel Sci Technol 62:193–200

    Article  Google Scholar 

  47. Vijayan BK, Dimitrijevic NM, Finkelstein-Shapiro D, Wu J, Gray KA (2012) Coupling titania nanotubes and carbon nanotubes to create photocatalytic nanocomposites. ACS Catal 2:223–229

    Article  Google Scholar 

  48. Zhang Y, Zhang N, Tang ZR, Xu YJ (2012) Graphene transforms wide band gap ZnS to visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 6:9777–9789

    Article  Google Scholar 

  49. Zhang KJ, Wei XU, Li XJ, Zhang SJ, Gang XU, Wang JH (2006) Photocatalytic oxidation activity of titanium dioxide film enhanced by Mn non-uniform doping. T NonFerr Metal SocChina 16:1069–1075

    Article  Google Scholar 

  50. Sakatani Y, Ando H, Okusako K, Koike H, Nunoshiqe J, Takata T, Kondo JN, Hara M, Domen K (2004) Metal ion and N co-doped TiO2 as a visible-light photocatalyst. J Maters Res 19:2100–2108

    Article  Google Scholar 

  51. Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu NQ (2009) Origin of the photocatalytic activity of nitrogen doped TiO2 nanobelts. J Am Chem Soc 131:12290–12297

    Article  Google Scholar 

  52. Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD (2010) Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic application. Adv Funct Mater 20:4175–4181

    Article  Google Scholar 

  53. Serpone N, Lawless D, Khairutdinov R (1995) Size effect on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transition in this indirect semiconductor. J Phys Chem 99:16646–16654

    Article  Google Scholar 

  54. Kuvarega AT, Krause RWM, Mamba BB (2011) Nitrogen/palladium co-doped TiO2 for efficient visible light photocatalytic dye degradation. J Phys Chem C 115:22110–22120

    Article  Google Scholar 

  55. Khalid NR, Ahmed E, Hong Z, Zhang Y, Ullah M, Amned M (2013) Graphene modified Nd/TiO2 photocatalyst for methyl orange degradation under visible light irradiation. Ceram Int 39:3569–3575

    Article  Google Scholar 

  56. Hamadanian M, Reisi-Vanani A, Majedi A (2010) Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu, S-doped TiO2 nanoparticles. Appl Surf Sci 256:1837–1844

    Article  Google Scholar 

  57. Mamba G, Mbianda XY, Mishra AK (2015) Photocatalytic degradation of the diazo dye naphthol blue black in water using MWCNT/Gd, N, S-TiO2 nanocomposites under simulated solar light. J Environ Sci 33:219–228

    Article  Google Scholar 

  58. Vautier M, Guilard C, Hermann JM (2001) Photocatalytic degradation of dyes in water: case study of indigo and indigo carmine. J Catal 201:46–59

    Article  Google Scholar 

Download references

Acknowledgments

The authors are extremely grateful to Faculty of science, University of Johannesburg, South Africa, the National Research Fund (TTK14052167682) of South Africa, Centre for Nanoscience and Research for financial support. Authors are thankful to Mr. A. Sacko, Department of Applied Chemistry, University of Johannesburg, for his help during the characterization of the materials. The authors (SKS and ESA) also acknowledge financial support from Global Excellence and Stature fellowship from the University of Johannesburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Osei-Bonsu Oppong.

Ethics declarations

Conflict of interest

The authors declare that there is no competing financial interest and that there is no conflict of interest between all the participating co-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oppong, S.OB., Anku, W.W., Shukla, S.K. et al. Photocatalytic degradation of indigo carmine using Nd-doped TiO2-decorated graphene oxide nanocomposites. J Sol-Gel Sci Technol 80, 38–49 (2016). https://doi.org/10.1007/s10971-016-4062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4062-8

Keywords

Navigation