Skip to main content
Log in

Sol–gel entrapment of bromothymol blue (BTB) indicator in the presence of cationic 16E1Q and 16E1QS surfactants

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol–gel entrapment method was used to entrap bromothymol blue (BTB) pH indicator into mesoporous silica materials in the presence of cationic surfactants: 2-(hexadecyloxy)-2-oxoethyl-N,N,N-triethyl ammonium iodide (16E1Q) and 2-(hexadecyloxy)-2-oxoethanaminium-p-toluene sulfonate (16E1QS). The use of this new family of surfactants has modified the morphology and porosity of silica host matrix for better sensing capability and for faster response toward pH change. The physical interactions between BTB molecules and host mesoporous silica network were based on the nature of the surfactant. The presence of surfactants has shifted pKa values of more basic in comparison with that of BTB-entrapped silica system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Scheme 6
Scheme 7
Fig. 3
Scheme 8
Fig. 4
Scheme 9
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buntem R, Intasiri A, Lueangchaichaweng W (2010) Facile synthesis of silica monolith doped with meso-tetra(p-carboxyphenyl)-porphyrin as a novel metal ion sensor. J Colloid Interface Sci 347:8–14

    Article  Google Scholar 

  2. Jeronimo PCA, Araujo AN, Montenegro M (2007) Optical sensors and biosensors based on sol–gel films. Talanta 72:13–27

    Article  Google Scholar 

  3. Walcarius A, Collinson MM (2009) Analytical chemistry with silica sol–gels: traditional routes to new materials for chemical analysis. Annu Rev Anal Chem 2:121–143

    Article  Google Scholar 

  4. Tan J, Wang HF, Yan XP (2009) Discrimination of saccharides with a fluorescent molecular imprinting sensor array based on phenylboronic acid functionalized mesoporous silica. Anal Chem 81:5273–5280

    Article  Google Scholar 

  5. Terry LA, White SF, Tigwell LJ (2005) The application of biosensors to fresh produce and the wider food industry. J Agric Food Chem 53:1309–1316

    Article  Google Scholar 

  6. Islam S, Rahman RA, Othman Z, Riaz S, Naseem S (2014) Synthesis and characterization of hybrid matrix with encapsulated organic sensing dyes for pH sensing application. J Ind Eng Chem 20:4408–4414

    Article  Google Scholar 

  7. Islam S, Bidin N, Riaz S, Rahman RA, Naseem S (2015) Mesoporous SiO2–TiO2 nanocomposite for pH sensing. Sens Actuators B Chem 221:993–1002

    Article  Google Scholar 

  8. Livage J, Coradin T, Roux C (2001) Encapsulation of biomolecules in silica gels. J Phys Condens 13:R673–R691

    Article  Google Scholar 

  9. Miled OB, Grosso D, Sanches C, Livage J (2004) An optical fibre pH sensor based on dye doped mesostructured silica. J Phys Chem Solids 65:1751–1755

    Article  Google Scholar 

  10. Rottman C, Grader G, Hazan YD, Melchior S, Avinir D (1999) Surfactant-induced modification of dopants reactivity in sol–gel matrices. J Am Chem Soc 121:8533–8543

    Article  Google Scholar 

  11. Brinker GW (1989) Scherer sol–gel science, the physics and chemistry of sol–gel processing. Academic press, San Diego

    Google Scholar 

  12. Zaggout F (2006) Encapsulation of bromothymol blue ph-indicator into a sol–gel matrix. J Dispers Sci Technol 27(2):175–178

    Article  Google Scholar 

  13. El Nahhal IM, Zourab SM, El-Ashgar NM (2001) Encapsulation of phenolphthalein pH-indicator into a sol–gel matrix. J Dispers Sci Technol 22:583–589

    Article  Google Scholar 

  14. El Nahhal IM, Zourab SM, Kodeh FS, Al-Bawab A (2010) Behaviour of phenol red pH-sensors in the presence of different surfactants using the sol–gel process. J Environ Anal Chem 90:644–656

    Article  Google Scholar 

  15. El Nahhal IM, Zourab SM, Kodeh FS (2012) Thin film optical BTB pH sensors using sol–gel method in presence of surfactants. Int Nano Lett 2:1–9

    Article  Google Scholar 

  16. Orioni B, Roversi M, La Mesa C, Asaro F, Pellizer G, D’Errico G (2006) Polymorphic behavior in protein-surfactant mixtures: the water-bovine serum albumin-sodium taurodeoxycholate system. J Phys Chem B 110:12129–12140

    Article  Google Scholar 

  17. Zhou T, Ao M, Xu G, Liu T, Zhang J (2013) Interactions of bovine serum albumin with cationic imidazolium and quaternary ammonium gemini surfactants: effects of surfactant architecture. J Colloid Interface Sci 389:175–181

    Article  Google Scholar 

  18. Pi Y, Shang Y, Peng C, Liu H, Hu Y (2006) Interactions between bovine serum albumin and gemini surfactant alkanediyl-α, ω-bis(dimethyldodecyl-ammonium bromide). J Jiang Biopolym 83:243–249

    Article  Google Scholar 

  19. Mir MA, Gull N, Khan JM, Khan RH, Dar AA, Rather GM (2010) Interaction of bovine serum albumin with cationic single chain+ nonionic and cationic gemini+ nonionic binary surfactant mixtures. J Phys Chem B114:3197–3204

    Article  Google Scholar 

  20. Hu M, Wang X, Wang H, Chai Y, He Y, Song G (2011) Fluorescence spectroscopic studies on the interaction of Gemini surfactant 14-6-14 with bovine serum albumin. Luminescence 27:204–210

    Article  Google Scholar 

  21. Caetano W, Ferreira M, Oliveira ON Jr, Itri R (2004) Enhanced stabilization of aerosol-OT surfactant monolayer upon interaction with small amounts of bovine serum albumin at the air-water interface. Colloids Surf B Biointerfaces 38:21–27

    Article  Google Scholar 

  22. Bharmoria P, Rao KS, Trivedi TJ, Kumar A (2013) Biamphiphilic ionic liquid induced folding alterations in the structure of bovine serum albumin in aqueous mediumJ. Phys Chem B 118:115–124

    Article  Google Scholar 

  23. El-Nahhal IM, Zourab SM, Kodeh FS, Abdelsalam FH (2014) Sol–gel encapsulation of bromothymol blue pH indicator in presence of Gemini 12-2-12 surfactant. J Sol–Gel Sci Technol 71(1):16–23

    Article  Google Scholar 

  24. Kuswandi B, Fikriyah CI, Gani AA (2008) An optical fiber biosensor for chlorpyrifos using a single sol–gel film containing acetylcholinesterase and bromothymol blue. Talanta 74(4):613–618

    Article  Google Scholar 

  25. Lobnik A, Majcen N, Niederreiter K, Uray G (2001) Optical pH sensor based on the absorption of antenna generated europium luminescence by bromothymol blue in a sol–gel membrane. Sens Actuators B Chem 74(1–3):200–206

    Article  Google Scholar 

  26. Abdel-Salam FH, Baker SA (2015) Accepted in Tenside Surfactant and Detergent 2015

Download references

Acknowledgments

The authors would like to thank the Chemistry Department of Al-Azhar University of Gaza for their generous support for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issa M. El-Nahhal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nahhal, I.M., Zourab, S.M., Kodeh, F.S. et al. Sol–gel entrapment of bromothymol blue (BTB) indicator in the presence of cationic 16E1Q and 16E1QS surfactants. J Sol-Gel Sci Technol 79, 628–636 (2016). https://doi.org/10.1007/s10971-016-4044-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4044-x

Keywords

Navigation