Skip to main content
Log in

Aqueous sol–gel synthesis and film deposition methods for the large-scale manufacture of coated steel with self-cleaning properties

  • Original Paper: Industrial and technological applications of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A process has been developed to enable the large-scale production of pure TiO2 films deposited on 316L stainless steel in order to get an easy-to-clean surface. This large-scale process requires an easy aqueous sol–gel procedure for the synthesis of the TiO2 sol. This synthesis has been simplified to facilitate the extrapolation toward an industrial scale. Results of TEM, photocatalytic properties, film hydrophilicity and texture obtained with the simplified aqueous sol–gel synthesis (IsoP–TiO2 synthesis) show similar properties to those obtained with the standard aqueous sol–gel synthesis of TiO2 (HAc–TiO2 synthesis) developed previously. Only, X-ray diffraction patterns showed differences, with the presence of anatase-brookite phases in IsoP–TiO2 synthesis while anatase phase only was observed in HAc–TiO2 synthesis. Both the aqueous sol–gel synthesis of pure TiO2 and the film deposition on steel by roll-coating have been successfully extrapolated to a larger scale. The photocatalytic activity and the hydrophilicity of the film were found to be unchanged when compared to films produced at a laboratory scale, thus validating the production of an efficient easy-to-clean material. Although some problems are still to be solved, this study is a hopeful first step in the development of a large-scale process for self-cleaning steel production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mills A, LeHunte S (1997) J Photochem Photobiol A 108:1

    Article  Google Scholar 

  2. Fujishima A, Hashimoto K, Watanabe T (1999) TiO2 Photocatalysis: Fundamentals and Applications. BKC Inc, Tokyo

    Google Scholar 

  3. Rauf MA, Ashraf SS (2009) Chem Eng J 151:10–18

    Article  Google Scholar 

  4. Houmard M, Riassetto D, Roussel F, Bourgeois A, Berthomé G, Joud JC, Langlet M (2007) Appl Surf Sci 254:1405–1414

    Article  Google Scholar 

  5. Guan K (2005) Surf Coat Technol 191:155–160

    Article  Google Scholar 

  6. Huang T, Huang W, Zhou C, Situ Y, Huang H (2012) Surf Coat Technol 213:126–132

    Article  Google Scholar 

  7. Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33

    Article  Google Scholar 

  8. Malengreaux CM, Léonard GML, Pirard SL, Ciemeri I, Lambert SD, Pirard JP, Bartlett JR, Heinrichs B (2014) Chem Eng J 243:539

    Article  Google Scholar 

  9. Schubert U (2005) J Mater Chem 15:3701

    Article  Google Scholar 

  10. Malengreaux CM, Timmermans A, Pirard SL, Lambert SD, Pirard JP, Poelman D, Heinrichs B (2012) Chem Eng J 195–196:347

    Article  Google Scholar 

  11. Bartlett JR, Gazeau D, Zemb T, Woolfrey JL (1998) Langmuir 14:3538

    Article  Google Scholar 

  12. Lyonnard S, Bartlett JR, Sizgek E, Finnie KS, Zemb T, Woolfrey JL (2002) Langmuir 18:10386

    Article  Google Scholar 

  13. Sizgek E, Bartlett JR, Brungs MP (1998) J Sol-Gel Sci Technol 13:1011

    Article  Google Scholar 

  14. Malengreaux CM, Douven S, Poelman D, Heinrichs B, Bartlett JR (2014) J Sol-Gel Sci Technol 71:557

    Article  Google Scholar 

  15. Malengreaux C (2013) Modified TiO2-based photocatalytic films and powders produced by aqueous and non-aqueous sol-gel processes for water purification, chap 5. Phd Thesis, University of Liège. http://hdl.handle.net/2268/147251. Accessed 10 Feb 2016

  16. Mahshid S, Askari M, Ghamsari MS (2007) J Mater Process Technol 189:296–300

    Article  Google Scholar 

  17. Chu B (2008) Dynamic light scattering. In: Borsali R, Pecora R (eds) Soft matter characterization. Springer, Netherlands, pp 335–372

    Chapter  Google Scholar 

  18. Singh KSW, Rouquerol J, Bergeret G, Gallezot P, Vaarkamp M, Koningsberger DC, Datye AK, Niemantsverdriet JW, Butz T, Engelhardt G, Mestl G, Knözinger H, Jobic H (1997) Characterization of solid catalysts: sections 3.1.1–3.1.3. In: Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH, pp 427–582

  19. Lecloux AJ (1981) In: Anderson JR, Boudart M (eds) Catalysis: science and technology, vol 2. Springer, Berlin, p 171

    Chapter  Google Scholar 

  20. Léonard GL-M, Remy S, Heinrichs B (2016) Mater Today Proc 3(2):434–438

    Article  Google Scholar 

  21. Crookes R (2007) Le décapage et la passivation de l’acier inoxydable. Série Matériaux et application, vol 4. Euro Inox

  22. Mills A, McGrady M (2008) J Photochem Photobiol A 193:228–236

    Article  Google Scholar 

  23. Mills A, Hepburn J, Hazafy D, O’Rourke C, Wells N, Krysa J, Baudys M, Zlamal M, Bartkova H, Hill CE, Winn KR, Simonsen ME, Søgaard EG, Banerjee S, Fagan R, Pillai SC (2014) J Photochem Photobiol A 290:63–71

    Article  Google Scholar 

  24. Bockmeyer M, Löbmann P (2006) Chem Mater 18:4478–4485

    Article  Google Scholar 

  25. Léonard GL-M, Malengreaux CM, Mélotte Q, Lambert SD, Bruneel E, Van Driessche I, Heinrichs B (2016) J Environ Chem Eng 4:449–459

    Article  Google Scholar 

  26. Flint SH, Brooks JD, Bremer PJ (2000) J Food Eng 43:235–242

    Article  Google Scholar 

  27. Huang J, Gu Y (2011) Curr Opin Colloid Interface Sci 16:470–481

    Article  Google Scholar 

  28. Parkin IP, Palgrave RG (2005) J Mater Chem 15:1689

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Isabelle Willems and Alain Germeau from Prayon S.A. for the provision of the extrapolation reactor. For their financial support, the authors are grateful to the Ministère de la Région Wallonne Direction Générale des Technologies, de la Recherche et de l’Energie, in relation to the Plan Marshall, and with support from the Pôle MecaTech for the research project “DAO—Durable Aesthetic Outdoor Contract No. 6765.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien G. Mahy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahy, J.G., Léonard, G.LM., Pirard, S. et al. Aqueous sol–gel synthesis and film deposition methods for the large-scale manufacture of coated steel with self-cleaning properties. J Sol-Gel Sci Technol 81, 27–35 (2017). https://doi.org/10.1007/s10971-016-4020-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4020-5

Keywords

Navigation