Skip to main content
Log in

Large room-temperature magnetoresistance in epitaxial La0.7Ca0.25Sr0.05MnO3 thin films prepared by sol–gel method

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Epitaxial La0.7Ca0.25Sr0.05MnO3 (LCSMO) thin films were successfully prepared on LaAlO3 (LAO) substrates by ordinary aqueous sol–gel method. X-ray diffraction result shows that the films have perfect crystalline orientation. The HRTEM results confirm that the films have epitaxial structure and the interface is very sharp and no misfit dislocations. The selected area electron diffraction patterns and fast Fourier transformation patterns mean that there exist three domains in the thin film. The single-particle spin-flip excitations are dominant for the metallic ferromagnets in low-temperature range. In paramagnetic range, the temperature dependence of resistivity can be well analyzed using a small polaron theory. The magnetoresistance value for the films reaches maximum about 65 % with 7 T magnetic field at 285 K which is promising for highly demanding applications. The conventional sol–gel method produces the lanthanum manganese oxide thin films with excellent epitaxial structure and large magnetoresistance at room temperature which can be used for either fundamental studies or real applications.

Graphical Abstract

The conventional sol–gel method produces the lanthanum manganese oxide thin films with excellent epitaxial structure and giant magnetoresistance at room temperature which can be used for either fundamental studies or real applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Salamon MB, Jaime M (2001) Rev Mod Phys 73:583

    Article  Google Scholar 

  2. Yamada H, Ogawa Y, Ishii Y, Sato H, Kawasaki M, Akoh H, Tokura Y (2004) Science 305:646

    Article  Google Scholar 

  3. Hwang HY, Cheong SW, Ong NP, Batlogg B (1996) Phys Rev Lett 77:2041

    Article  Google Scholar 

  4. Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y (1995) Phys Rev B 51:14103

    Article  Google Scholar 

  5. Moreo A, Yunoki S, Dagotto E (1999) Science 283:2034

    Article  Google Scholar 

  6. Schiffer P, Ramirez AP, Bao W, Cheong SW (1995) Phys Rev Lett 75:3336

    Article  Google Scholar 

  7. Jin S, Tiefel TH, McCormack M, Fastnacht RA, Ramesh R, Chen LH (1994) Science 264:413

    Article  Google Scholar 

  8. Jin S, McCormack M, Tiefel TH, Ramesh R (1994) J Appl Phys 76:6929

    Article  Google Scholar 

  9. Phan MH, Yu SC, Hur NH (2005) Appl Phys Lett 86:072504

    Article  Google Scholar 

  10. Prokhorov VG, Komashko VA, Kaminsky GG, Lee YP, Hyun YH, Yu KK, Park JS, Svetchnikov VL (2006) Low Temp Phys 32:650

    Article  Google Scholar 

  11. Thanh TD, Nguyen LH, Manh DH, Chien NV, Phong PT, Khiem NV, Hong LV, Phuc NX (2012) Phys B 407:145

    Article  Google Scholar 

  12. Cao DY, Zhang YY, Dong WX, Yang J, Bai W, Chen Y, Wang GS, Dong XL, Tang XD (2015) Ceram Int 41:S381

    Article  Google Scholar 

  13. Tomioka Y, Asamitsu A, Tokura Y (2000) Phys Rev B 63:024421

    Article  Google Scholar 

  14. Jaime M, Haidner HT, Salamon MB, Rubinstein M, Dorsey P, Emin D (1997) Phys Rev Lett 78:951

    Article  Google Scholar 

  15. Jakob G, Westerburg W, Martin F, Adrian H (1998) Phys Rev B 58:14966

    Article  Google Scholar 

  16. Adamo C, Perroni CA, Cataudella V, Filippis GD, Orgiani P, Maritato L (2009) Phys Rev B 79:045125

    Article  Google Scholar 

  17. Moon EJ, Balachandran PV, Kirby BJ, Keavney DJ, Sichel-Tissot RJ, Schleputz CM, Karapetrova E, Cheng XM, Rondinelli JM, May SJ (2014) Nano Lett 14:2509

    Article  Google Scholar 

  18. Jain M, Shukla P, Li Y, Hundley MF, Wang H, Foltyn SR, Burrell AK, McCleskey TM, Jia QX (2006) Adv Mater 18:2695

    Article  Google Scholar 

  19. Jain M, Lin Y, Shukla P, Li Y, Wang H, Hundley MF, Burrell AK, McCleskey TM, Foltyn SR, Jia QX (2007) Thin Solid Films 515:6411

    Article  Google Scholar 

  20. Staruch M, Gao H, Gao PX, Jain M (2012) Adv Funct Mater 22:3591

    Article  Google Scholar 

  21. Rivadulla F, Bi Z, Bauer E, Rivas-Murias B, Vila-Fungueiriño JM, Jia QX (2013) Chem Mater 25:55

    Article  Google Scholar 

  22. Vila-Fungueiriño JM, Rivas-Murias B, Rodríguez-González B, Rivadulla F (2014) Chem Mater 26:1480

    Article  Google Scholar 

  23. Hasenkox U, Mitze C, Waser R (1997) J Am Ceram Soc 80:2709

    Article  Google Scholar 

  24. Ren Q, Zhang YY, Chen Y, Wang GS, Dong XL, Tang XD (2013) J Sol-Gel Sci Technol 67:170

    Article  Google Scholar 

  25. Yin WH, Zhang YY, Cao DY, Yang J, Bai W, Chen Y, Wang GS, Dong XL, Duan CG, Tang XD (2015) J Appl Phys 117:17E102

    Article  Google Scholar 

  26. Méchin L, Wu S, Guillet B, Perna P, Fur C, Lebargy S, Adamo C, Schlom DG, Routoure JM (2013) J Phys D Appl Phys 46:202001

    Article  Google Scholar 

  27. Hibble SJ, Copper SP, Hannon AC, Fawcett ID, Greenblatt M (1999) J Phys Condens Matter 11:9221

    Article  Google Scholar 

  28. Snyder GJ, Hisks R, DiCarolis S, Bwasley MR, Geballe TH (1996) Phys Rev B 53:14434

    Article  Google Scholar 

  29. Hundley MF, Hawley M, Heffner RH, Jia QX, Neumeier JJ, Tesmer J, Thompson JD, Wu XD (1995) Appl Phys Lett 67:860

    Article  Google Scholar 

  30. Jain M, Bauer E, Ronning F, Hundley MF, Civale L, Wang H, Maiorov B, Burrell AK, McClesky TM, Foltyn SR, Depaula RF, Jia QX (2008) J Am Ceram Soc 91:1858

    Article  Google Scholar 

  31. Sun Y, Xu X, Zheng L, Zhang Y (1999) Phy Rev B 60:12317

    Article  Google Scholar 

  32. Moshnyaga V, Gehrke K, Lebedev O, Sudheendra L, Belenchuk A, Raabe S, Shapoval O, Verbeeck J, Van Tendeloo G, Samwer K (2009) Phys Rev B 79:134413

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (Grant Nos. 51302084, 11104074, 61574058, 61176011, 61376129, 11374098 and 11304097), Natural Science Foundation of Shanghai (Nos. 13ZR1412200), Key Laboratory of Inorganic function material and device, Chinese Academy of Sciences (KLIFMD-2011-06, KLIFMD-2012-01) and Fundamental Research Funds for the Central Universities (ECNU) and Key Laboratory of Polar Materials and Devices, Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyuan Zhang or Xiaodong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Dong, W., Qi, R. et al. Large room-temperature magnetoresistance in epitaxial La0.7Ca0.25Sr0.05MnO3 thin films prepared by sol–gel method. J Sol-Gel Sci Technol 78, 576–581 (2016). https://doi.org/10.1007/s10971-016-4000-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4000-9

Keywords

Navigation