Skip to main content
Log in

Synthesis and characterization of poly(lactic acid)-modified superparamagnetic iron oxide nanoparticles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Poly(ethylene glycol) (PEG)- and poly(vinylpyrrolidone) (PVP)-coated superparamagnetic iron oxide nanoparticles (SPIONs) with the particle size of 8.0 ± 1.4 nm were synthesized by thermal decomposition of Fe(acac)3 in 15 g PEG containing 0.3 g PVP (PEG/PVP-SPIONs) and then were coated further with poly(lactic acid) (PLA/PEG/PVP-SPIONs). The PEG/PVP-SPIONs and PLA/PEG/PVP-SPIONs were superparamagnetic with the saturation magnetization of 54.5 and 46.2 emu/g measured by the superconducting quantum interference device, respectively. The hydrodynamic diameter of PEG/PVP-SPIONs in deionized water was 18.8 nm, which increased to 52.4 nm after coated with PLA. The zeta potential of PEG/PVP-SPIONs was 0 mV, which changed to −11.3 mV after coated with PLA. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses indicated that PLA was attached to the PEG/PVP-SPIONs. Thermogravimetric analyses showed that the amount of PLA coated on PEG/PVP-SPIONs was about 9.6 wt%. With high magnetic properties and good dispersibility in aqueous media, the uniform-sized PLA/PEG/PVP-SPIONs nanoparticles have potential in biomedical application.

Graphical Abstract

The synthesis and coating of the SPIONs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Yang XQ, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Matson VZ, Steeber DA, Gong SQ (2010) ACS Nano 4:6805–6817

    Article  Google Scholar 

  2. Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Biomaterials 29:4012–4021

    Article  Google Scholar 

  3. You J, Zhang GD, Li C (2010) ACS Nano 4:1033–1041

    Article  Google Scholar 

  4. Tong JH, Cai XD, Wang HY, Xia CG (2013) J Sol–Gel Sci Technol 66:452–459

    Article  Google Scholar 

  5. Na HB, Song IC, Hyeon T (2009) Adv Mater 21:2133–2148

    Article  Google Scholar 

  6. Yang H, Zhuang YM, Hu H, Du XX, Zhang CX, Shi XY, Wu HX, Yang SP (2010) Adv Funct Mater 20:1733–1741

    Article  Google Scholar 

  7. Yang XQ, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Steeber DA, Gong SQ (2010) Biomaterials 31:9065–9073

    Article  Google Scholar 

  8. Yu J, Xu X, Yao FL, Luo ZC, Jin L, Xie BB, Shi S, Ma HX, Li XY, Chen H (2014) Int J Pharm 470:151–157

    Article  Google Scholar 

  9. Zhou JY, Fu HL, Peng GN, Cao H, Zhang YL, Liu MJ, Wu WB, Qing XY, Zhou JJ (2014) Fluid Phase Equilib 376:159–164

    Article  Google Scholar 

  10. Cole AJ, David AE, Wang JX, Galbánb CJ, Hilla HL, Yang VC (2011) Biomaterials 32:2183–2193

    Article  Google Scholar 

  11. Cao XL, Zhang BL, Zhao FY, Feng LY (2012) J Nanomater 2012:1, Article ID 607296

  12. Huang J, Bu LH, Xie J, Chen K, Cheng Z, Li XG, Chen XY (2010) ACS Nano 4:7151–7160

    Article  Google Scholar 

  13. Papong S, Malakul P, Trungkavashirakun R, Wenunun P, Chom-in T, Nithitanakul M, Sarobol E (2014) J Clean Prod 65:539–550

    Article  Google Scholar 

  14. Song ZP, Xiao HN, Zhao Y (2014) Carbohydr Polym 111:442–448

    Article  Google Scholar 

  15. Tanase CE, Spiridon I (2014) Mater Sci Eng C 40:242–247

    Article  Google Scholar 

  16. Grumezescu AM, Andronescu E, Oprea AE, Holban AM, Socol G, Grumezescu V, Chifiriuc MC, Iordache F, Maniu H (2014) J Sol–Gel Sci Technol 2014:1–8

    Google Scholar 

  17. Zhang C, Wan X, Zheng XY, Shao XY, Liu QF, Zhang QZ, Qian Y (2014) Biomaterials 35:456–465

    Article  Google Scholar 

  18. Lee ES, Lim C, Song H, Yun JM, Lee KS, Lee B, Youn YS, Oh YT, Oh KT (2012) Int J Pharm 439:342–348

    Article  Google Scholar 

  19. Yang F, Gu AY, Chen ZP, Gu N, Ji M (2008) Mater Lett 62:121–124

    Article  Google Scholar 

  20. Jana NR, Chen YF, Peng XG (2004) Chem Mater 16:3931–3935

    Article  Google Scholar 

  21. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Nat Mater 3:891–895

    Article  Google Scholar 

  22. Minati L, Micheli V, Rossi B, Migliaresi C, Dalbosco L, Bao G, Hou S, Speranza G (2011) Appl Surf Sci 257:10863–10868

    Article  Google Scholar 

  23. Li Z, Wei L, Gao M (2005) Adv Mater 17:1001–1005

    Article  Google Scholar 

  24. Corot C, Robert P, Idée JM, Port M (2006) Adv Drug Deliv Rev 58:1471–1504

    Article  Google Scholar 

  25. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessing F, Castranova V, Thompson M (2009) Nat Mater 8:543–557

    Article  Google Scholar 

  26. Xu ZC, Shen CM, Hou YL, Gao HJ, Sun SH (2009) Chem Mater 21:1778–1780

    Article  Google Scholar 

  27. Chen JN, Li SS, Shen Q (2012) Eur J Pharm Sci 47:430–443

    Article  Google Scholar 

  28. Mi HY, Salick MR, Jing X, Jacques BR, Crone WC, Peng XF, Turng LS (2013) Mater Sci Eng C 33:4767–4776

    Article  Google Scholar 

  29. Huang SL, Yu XH, Yang LL, Song FL, Chen G, Lv ZF, Li T, Chen D, Zhu WH, Yu AA, Zhang YM, Yang F (2014) Eur J Pharm Sci 63:187–198

    Article  Google Scholar 

  30. Mondini S, Cenedese S, Marinoni G, Molteni G, Santo N, Bianchi CL, Ponti A (2010) J Colloid Interf Sci 322:173–179

    Article  Google Scholar 

  31. Zhao FY, Zhang BL, Feng LY (2012) Mater Lett 68:112–114

    Article  Google Scholar 

  32. Yang G, Zhang BL, Wang J, Xie SB, Li X (2015) J Magn Magn Mater 374:205–208

    Article  Google Scholar 

  33. Goncalves RH, Cardoso CA, Leite ER (2010) J Mater Chem 20:1167–1172

    Article  Google Scholar 

  34. Arsalani N, Fattahi H, Nazarpoor M (2010) Express Polym Lett 4:329–338

    Article  Google Scholar 

  35. Abidi N, Cabrales L, Haigler CH (2014) Carbohydr Polym 100:9–16

    Article  Google Scholar 

  36. Tu ZJ, Zhang BL, Yang G, Wang M, Zhao FY, Sheng D, Wang J (2013) Colloid Surf A 436:854–861

    Article  Google Scholar 

  37. Qi HZ, Yan B, Lu W (2014) J Sol–Gel Sci Technol 69:67–71

    Article  Google Scholar 

  38. Singh M, Uibrich P, Prokopec V, Svoboda P, Šantavá E, Štěpánek F (2013) J Magn Magn Mater 339:106–113

    Article  Google Scholar 

  39. Lu XY, Niu M, Qiao RR, Gao MY (2008) J Phys Chem B 112(46):14390–14394

    Article  Google Scholar 

  40. Essa S, Rabanel JM, Hildgen P (2010) Int J Pharm 388(1):263–273

    Article  Google Scholar 

  41. Jordá-Vilaplana A, Fombuena V, García-García D, Samper MD, Sánchez-Nácher L (2014) Eur Polym J 58:23–33

    Article  Google Scholar 

  42. Couturaud B, Bondia AM, Faye C, Garrelly L, Mas A, Robin JJ (2013) J Colloid Interf Sci 408:242–251

    Article  Google Scholar 

  43. Song YJ, Wang RX, Rong R, Ding J, Liu J, Li RS, Liu ZH, Li H, Wang XY, Zhang J (2011) Eur J Inorg Chem 22:3303–3313

    Article  Google Scholar 

  44. Ling XL, Wei YZ, Zou LM, Xu S (2014) Colloid Surf A 443:19–26

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51162003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baolin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Zhang, B., Wang, J. et al. Synthesis and characterization of poly(lactic acid)-modified superparamagnetic iron oxide nanoparticles. J Sol-Gel Sci Technol 77, 335–341 (2016). https://doi.org/10.1007/s10971-015-3858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3858-2

Keywords

Navigation